Skip to main content

Advertisement

Log in

Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription–polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Schmidt, C., Haefner, E., Gerbeth, J., Beissert, T., Sahin, U., Perkovic, M., & Schnierle, B. S. (2022). A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. Molecular Therapy-Nucleic Acids, 28, 743–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weaver, S. C., & Forrester, N. L. (2015). Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Research, 120, 32–39.

    Article  CAS  PubMed  Google Scholar 

  3. Montalvo Zurbia-Flores, G., Reyes-Sandoval, A., & Kim, Y. C. (2023). Chikungunya virus: Priority pathogen or passing trend? Vaccines, 11(3), 568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hakim, M. S., Annisa, L., Gazali, F. M., & Aman, A. T. (2022). The origin and continuing adaptive evolution of chikungunya virus. Archives of Virology, 167(12), 2443–2455.

    Article  CAS  PubMed  Google Scholar 

  5. Abdelnabi, R., Neyts, J., & Delang, L. (2017). Chikungunya virus infections: Time to act, time to treat. Current Opinion in Virology, 24, 25–30.

    Article  PubMed  Google Scholar 

  6. de Lima Cavalcanti, T. Y., Pereira, M. R., de Paula, S. O., & Franca, R. F. (2022). A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses, 14(5), 969.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yin, P., Davenport, B. J., Wan, J. J., Kim, A. S., Diamond, M. S., Ware, B. C., Tong, K., Couderc, T., Lecuit., & Kielian, M. (2023b). Chikungunya virus cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo. Nature Microbiology, 1–15

  8. Horwood, P., & Buchy, P. (2015). Chikungunya. Revue scientifique et technique (International Office of Epizootics), 34(2), 479–489.

    CAS  PubMed  Google Scholar 

  9. Silva, L. A., & Dermody, T. S. (2017). Chikungunya virus: Epidemiology, replication, disease mechanisms, and prospective intervention strategies. The Journal of Clinical Investigation, 127(3), 737–749.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Long, F., Fong, R. H., Austin, S. K., Chen, Z., Klose, T., Fokine, A., Liu, Y., Porta, J., Sapparapu, G., Akahata, W., Doranz, B. J., Crowe, J. E., Diamond, M. S., & Rossmann, M. G. (2015). Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proceedings of the National Academy of Sciences, 112(45), 13898–13903.

    Article  ADS  CAS  Google Scholar 

  11. Basurko, C., Hcini, N., Demar, M., Abboud, P., Nacher, M., Carles, G., Lambert, V., Matheus, S., Group, C. S. (2022). Symptomatic Chikungunya virus infection and pregnancy outcomes: A nested case-control study in French Guiana. Viruses, 14(12), 2705.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martins, E. B., Quintana, M. S., Silva, M. F., de Bruycker-Nogueira, F., Moraes, I. C., Rodrigues, C. D., Santos, C. C., Sampaio, S. A., Pina-Costa, A., Fabri, A. A., & Guerra-Campos, V. (2023). Predictors of chronic joint pain after Chikungunya virus infection in the INOVACHIK prospective cohort study. Journal of Clinical Virology, 169, 105610.

    Article  CAS  PubMed  Google Scholar 

  13. Martins, E. B., Silva, M. F., Tassinari, W. S., de Bruycker-Nogueira, F., Moraes, I. C., Rodrigues, C. D., Santos, C. C., Sampaio, S. A., Pina-Costa, A., Fabri, A. A., & Guerra-Campos, V. (2022). Detection of Chikungunya virus in bodily fluids: The INOVACHIK cohort study. PLoS Neglected Tropical Diseases, 16(3), e0010242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tun, Y. M., Charunwatthana, P., Duangdee, C., Satayarak, J., Suthisawat, S., Likhit, O., Lakhotia, D., Kosoltanapiwat, N., Sukphopetch, P., & Boonnak, K. (2022). Virological, serological and clinical analysis of Chikungunya virus infection in Thai patients. Viruses, 14(8), 1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhatnagar, S., Kumar, P., Mohan, T., Verma, P., Parida, M., Hoti, S., & Rao, D. (2015). Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection. Viral Immunology, 28(2), 107–112.

    Article  CAS  PubMed  Google Scholar 

  16. Jain, J., Okabayashi, T., Kaur, N., Nakayama, E., Shioda, T., Gaind, R., Kurosu, T., & Sunil, S. (2018). Evaluation of an immunochromatography rapid diagnosis kit for detection of chikungunya virus antigen in India, a dengue-endemic country. Virology Journal, 15(1), 1–6.

    Article  Google Scholar 

  17. George, A., Amrutha, M., Srivastava, P., Sai, V., Sunil, S., & Srinivasan, R. (2019). Label-free detection of chikungunya non-structural protein 3 using electrochemical impedance spectroscopy. Journal of The Electrochemical Society, 166(14), B1356.

    Article  CAS  Google Scholar 

  18. Campos, E. V. R., Luiz, J., de Oliveira, D., Abrantes, C., Rogério, C. B., Bueno, C., Miranda, V. R., Monteiro, R. A., & Fraceto, L. F. (2020). Recent developments in nanotechnology for detection and control of aedes aegypti-borne diseases. Front Bioeng Biotechnol, 8, 102.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gowdhami, D., & Balaji, V. (2023). Design and analysis of a photonic crystal-based biosensor for the detection of chikungunya virus. Laser Physics, 33(8), 085602.

    Article  ADS  Google Scholar 

  20. Sharma, A., Mishra, R. K., Yugender Goud, K., Mohamed, M. A., Kummari, S., Tiwari, S., Li, Z., Narayan, R., Stanciu, L. A., & Marty, J. L. (2021). Optical biosensors for diagnostics of infectious viral disease: A recent update. Diagnostics, 11(11), 2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, S., Kumar, A., Singh, K. S., & Tyagi, H. K. (2021). 2D photonic crystal based biosensor for the detection of chikungunya virus. Optik, 237, 166575.

    Article  ADS  CAS  Google Scholar 

  22. Moradi, N., Taghizadeh, S. M., Hadi, N., Ghanbariasad, A., Berenjian, A., Khoo, K. S., Varjani, S., Show, P. L., & Ebrahiminezhad, A. (2022). Synthesis of mesoporous antimicrobial herbal nanomaterial-carrier for silver nanoparticles and antimicrobial sensing. Food and Chemical Toxicology, 165, 113077.

    Article  CAS  PubMed  Google Scholar 

  23. Karim, S. S., Murtaza, Z., Farrukh, S., Umer, M. A., Ali, S. S., Younas, M., Mubashir, M., Saqib, S., Ayoub, M., Bokhari, A., & Peter, A. P. (2022). Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Environmental research, 205, 112402.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Khoo, K. S., Chia, W. Y., Tang, D. Y. Y., Show, P. L., Chew, K. W., & Chen, W.-H. (2020). Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies, 13(4), 892.

    Article  CAS  Google Scholar 

  25. Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J., Li, Y., & Gajendran, B. (2019). Nanoparticles: antimicrobial applications and its prospects. Advanced nanostructured materials for environmental remediation (pp. 321–355). Cham: Springer.

    Chapter  Google Scholar 

  26. Faghihkhorasani, A., Ahmed, H. H., Mashool, N. M., Alwan, M., Assefi, M., Adab, A. H., Yasamineh, S., Gholizadeh, O., & Baghani, M. (2023). The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection. Virology Journal, 20(1), 222.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lau, Z. L., Low, S. S., Ezeigwe, E. R., Chew, K. W., Chai, W. S., Bhatnagar, A., Yap, Y. J., & Show, P. L. (2022). A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. Bioresource Technology, 351, 127048.

    Article  CAS  PubMed  Google Scholar 

  28. Nasiri, K., Masoumi, S. M., Amini, S., Goudarzi, M., Tafreshi, S. M., Bagheri, A., Yasamineh, S., Alwan, M., Arellano, M. T. C., & Gholizadeh, O. (2023). Recent advances in metal nanoparticles to treat periodontitis. Journal of Nanobiotechnology, 21(1), 283.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Norouzi, M., Yasamineh, S., Montazeri, M., Dadashpour, M., Sheervalilou, R., Abasi, M., & Pilehvar-Soltanahmadi, Y. (2019). Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Materials Science and Engineering: C, 104, 110007.

    Article  CAS  PubMed  Google Scholar 

  30. Low, S. S., Ji, D., Chai, W. S., Liu, J., Khoo, K. S., Salmanpour, S., Karimi, F., Deepanraj, B., & Show, P. L. (2021). Recent progress in nanomaterials modified electrochemical biosensors for the detection of MicroRNA. Micromachines, 12(11), 1409.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Low, S. S., Lim, C. N., Yew, M., Chai, W. S., Low, L. E., Manickam, S., Tey, B. T., & Show, P. L. (2021). Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrasonics sonochemistry, 80, 105805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gholizadeh, O., Akbarzadeh, S., Moein, M., Yasamineh, S., Hosseini, P., Afkhami, H., Amini, P., Dadashpour, M., Tahavvori, A., Eslami, M., & hossein Taherian, M. (2023). The role of non-coding RNAs in the diagnosis of different stages (HCC, CHB, OBI) of hepatitis B infection. Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2023.105995

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu, J., Stojanović, J., Yasamineh, S., Yasamineh, P., Karuppannan, S. K., Hussain Dowlath, M. J., & Serati-Nouri, H. (2021). The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Archives of Virology, 166, 2649–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oveili, E., Vafaei, S., Bazavar, H., Eslami, Y., Mamaghanizadeh, E., Yasamineh, S., & Gholizadeh, O. (2023). The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Communication and Signaling, 21(1), 1–26.

    Article  Google Scholar 

  35. Roy, E., & Byrareddy, S. N. (2020). Role of MicroRNAs in bone pathology during Chikungunya virus infection. Viruses. https://doi.org/10.3390/v12111207

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kang, J., Tahir, A., Wang, H., & Chang, J. (2021). Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WIREs Nanomedicine and Nanobiotechnology, 13(4), e1700. https://doi.org/10.1002/wnan.1700

    Article  CAS  PubMed  Google Scholar 

  37. Singhal, C., Dubey, A., Mathur, A., Pundir, C., & Narang, J. (2018). Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochemistry, 74, 35–42.

    Article  CAS  Google Scholar 

  38. Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C., & Narang, J. (2018). Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Scientific Reports, 8(1), 7734.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C., & Narang, J. (2018). Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Scientific Reports, 8(1), 1–11.

    Article  CAS  Google Scholar 

  40. Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C. S., & Narang, J. (2018). Detection of chikungunya virus DNA using two-dimensional MoS(2) nanosheets based disposable biosensor. Science and Reports, 8(1), 7734. https://doi.org/10.1038/s41598-018-25824-8

    Article  ADS  CAS  Google Scholar 

  41. Singh, T. I., Singh, P., & Karki, B. (2023). Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics. https://doi.org/10.1007/s11468-023-01840-x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma, P., Hassan, H., Hasan, M. R., Fatima, T., Mohan, H., Khanuja, M., Kaushik, S., & Narang, J. (2023). PBIS-based system integrated with zinc–silver nanocomposite for the detection of Chikungunya virus. Biosensors and Bioelectronics: X, 13, 100303.

    CAS  Google Scholar 

  43. Khan, M., Hasan, M., Hossain, S., Ahommed, M., & Daizy, M. (2020). Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosensors and Bioelectronics, 166, 112431.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano biosensors: Properties, applications and electrochemical techniques. Journal of Materials Research and Technology, 12, 1649–1672.

    Article  CAS  Google Scholar 

  45. Lopez, S., Yao, J.-S., Kuhn, R. J., Strauss, E. G., & Strauss, J. H. (1994). Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses. Journal of virology, 68(3), 1316–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirako, Y., Strauss, E. G., & Strauss, J. H. (2000). Suppressor mutations that allow Sindbis virus RNA polymerase to function with nonaromatic amino acids at the N-terminus: Evidence for interaction between nsP1 and nsP4 in minus-strand RNA synthesis. Virology, 276(1), 148–160.

    Article  CAS  PubMed  Google Scholar 

  47. Yin, P., Davenport, B. J., Wan, J. J., Kim, A. S., Diamond, M. S., Ware, B. C., Tong, K., Couderc, T., Lecuit, M., Lai, J. R., Morrison, T. E., & Kielian, M. (2023). Chikungunya virus cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo. Nature Microbiology, 8(9), 1653–1667.

    Article  CAS  PubMed  Google Scholar 

  48. Kendall, C., Khalid, H., Müller, M., Banda, D. H., Kohl, A., Merits, A., Stonehouse, N. J., & Tuplin, A. (2019). Structural and phenotypic analysis of Chikungunya virus RNA replication elements. Nucleic Acids Research, 47(17), 9296–9312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khan, A. H., Morita, K., del Carmen Parquet, M., Hasebe, F., Mathenge, E. G., & Igarashi, A. (2002). Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. Journal of General Virology, 83(12), 3075–3084.

    Article  CAS  PubMed  Google Scholar 

  50. Khongwichit, S., Chansaenroj, J., Chirathaworn, C., & Poovorawan, Y. (2021). Chikungunya virus infection: Molecular biology, clinical characteristics, and epidemiology in Asian countries. Journal of Biomedical Science, 28(1), 1–17.

    Article  Google Scholar 

  51. Schmaljohn, A. L., & McClain, D. (1996). Alphaviruses (togaviridae) and flaviviruses (flaviviridae). Medical Microbiology. 4th edition.

  52. Vasiljeva, L., Merits, A., Auvinen, P., & Kääriäinen, L. (2000). Identification of a Novel function of the alphaviruscapping apparatus: RNA 5′-triphosphatase activity of Nsp2. Journal of Biological Chemistry, 275(23), 17281–17287.

    Article  CAS  PubMed  Google Scholar 

  53. Strauss, E. G., & Strauss, J. H. (1986). Structure and replication of the alphavirus genome. The Togaviridae and Flaviviridae (pp. 35–90). Cham: Springer.

    Chapter  Google Scholar 

  54. Powers, A. M., Brault, A. C., Tesh, R. B., & Weaver, S. C. (2000). Re-emergence of Chikungunya and O’nyong-nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. Journal of General Virology, 81(2), 471–479.

    CAS  PubMed  Google Scholar 

  55. Carrasquilla, C. T., Henry, A., & Navarro, J. C. (2012). 19. Leparc-Goffart I., Nougairede A., Cassadou S., Prat C., de Lamballerie X. Chikungunya in the Americas.//Lancet. 2014; 383: 514. doi: 10.1016/S0140-6736 (14): 60185-89. 20. Likos A., Griffin I., Bingham AM, Stanek D., Fischer. Journal of Internal Medicine, 23(4), 325–329.

    Google Scholar 

  56. Lanciotti, R. S., & Valadere, A. M. (2014). Transcontinental movement of Asian genotype chikungunya virus. Emerging Infectious Diseases, 20(8), 1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Powers, A. M. (2016). How Chikungunya virus virology affects its epidemiology and transmission: implications for influencing public health. The Journal of Infectious Diseases., 214(suppl_5), S449–S452.

    Article  PubMed  Google Scholar 

  58. Yergolkar, P., Tandale, B., Arankalle, V., Sathe, P., Gandhe, S., Gokhle, M., Jacob, G., Hundekar, S., Mishra, A., & Sudeep, A. B. (2006). Chikungunya outbreaks caused by African genotype, India. Emerging Infectious Diseases, 12(10), 1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ge, N., Sun, J., Liu, Z., Shu, J., Yan, H., Zhihua Kou, Yu., & Wei, X. J. (2022). An mRNA vaccine encoding Chikungunya virus E2–E1 protein elicits robust neutralizing antibody responses and CTL immune responses. Virologica Sinica. https://doi.org/10.1016/j.virs.2022.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  60. Natrajan, M. S., Rojas, A., & Waggoner, J. J. (2019). Beyond fever and pain: Diagnostic methods for chikungunya virus. Journal of Clinical Microbiology, 57(6), e00350-e1319.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hussien, F. H. (2023). An overview of Chikungunya disease, origins, symptoms, transmission, route of infection, diagnosis, and treatment. Medical Journal of Babylon, 20(2), 240–243.

    Article  Google Scholar 

  62. Bartholomeeusen, K., Daniel, M., LaBeaud, D. A., Gasque, P., Peeling, R. W., Stephenson, K. E., Ng, L. F. P., & Ariën, K. K. (2023). Chikungunya fever. Nature Reviews Disease Primers, 9(1), 17.

    Article  PubMed  Google Scholar 

  63. Calabrese, L. H. (2008). Emerging viral infections and arthritis: The role of the rheumatologist. Nature clinical practice Rheumatology, 4(1), 2–3.

    Article  PubMed  Google Scholar 

  64. Dupuis-Maguiraga, L., Noret, M., Brun, S., Le Grand, R., Gras, G., & Roques, P. (2012). Chikungunya disease: Infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Neglected Tropical Diseases, 6(3), e1446.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hoarau, J.-J., Bandjee, M.-C., Trotot, P. K., Das, T., Li-Pat-Yuen, G., Dassa, B., Denizot, M., Guichard, E., Ribera, A., Henni, T., Tallet, F., Moiton, M. P., Gauzère, B. A., Bruniquet, S., Bandjee, Z. J., Morbidelli, P., Martigny, G., Jolivet, M., Gay, F., … Gasque, P. (2010). Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. The Journal of Immunology, 184(10), 5914–5927.

    Article  CAS  PubMed  Google Scholar 

  66. Phuklia, W., Kasisith, J., Modhiran, N., Rodpai, E., Thannagith, M., Thongsakulprasert, T., Smith, D. R., & Ubol, S. (2013). Osteoclastogenesis induced by CHIKV-infected fibroblast-like synoviocytes: a possible interplay between synoviocytes and monocytes/macrophages in CHIKV-induced arthralgia/arthritis. Virus Research, 177(2), 179–188.

    Article  CAS  PubMed  Google Scholar 

  67. Teo, T.-H., Lum, F.-M., Claser, C., Lulla, V., Lulla, A., Merits, A., Rénia, L., & Ng, L. F. P. (2013). A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. The Journal of Immunology, 190(1), 259–269.

    Article  CAS  PubMed  Google Scholar 

  68. Chow, A., Her, Z., Ong, E. K. S., Chen, J.-M., Dimatatac, F., Kwek, D. J. C., Barkham, T., Yang, H., Rénia, L., Leo, Y.-S., & Ng, L. F. P. (2011). Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. Journal of Infectious Diseases, 203(2), 149–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdelnabi, R., Neyts, J., & Delang, L. (2016). Antiviral strategies against Chikungunya virus. Methods in Molecular Biology (Clifton, N.J.), 1426, 243–253. https://doi.org/10.1007/978-1-4939-3618-2_22.

    Article  CAS  Google Scholar 

  70. Bouma, E. M., van de Pol, D. P., Sanders, I. D., Rodenhuis-Zybert, I. A., & Smit, J. M. (2020). Serotonergic drugs inhibit chikungunya virus infection at different stages of the cell entry pathway. Journal of Virology. https://doi.org/10.1128/jvi.00274-00220

    Article  PubMed  PubMed Central  Google Scholar 

  71. Subudhi, B. B., Chattopadhyay, S., Mishra, P., & Kumar, A. (2018). Current strategies for inhibition of Chikungunya infection. Viruses, 10(5), 235.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abdelnabi, R., Neyts, J., & Delang, L. (2015). Towards antivirals against chikungunya virus. Antiviral Research, 121, 59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghildiyal, R., & Gabrani, R. (2020). Antiviral therapeutics for chikungunya virus. Expert Opinion on Therapeutic Patents, 30(6), 467–480.

    Article  CAS  PubMed  Google Scholar 

  74. Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1–15.

    Article  Google Scholar 

  75. Lowe, C. (1989). Biosensors. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 324(1224), 487–496.

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Allouzi, M. M. A., Allouzi, S., Al-Salaheen, B., Khoo, K. S., Rajendran, S., Sankaran, R., Sy-Toan, N., & Show, P. L. (2022). Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochemical Engineering Journal, 187, 108653.

    Article  CAS  Google Scholar 

  77. Mehrvar, M., & Abdi, M. (2004). Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Sciences, 20(8), 1113–1126.

    Article  CAS  PubMed  Google Scholar 

  78. Stark, P. M., Azar, S. R., Debboun, M., Vela, J., Roundy, C. M., Rossi, S. L., Reyna, M., Hanley, K. A., Ribeiro, G. S., Kitron, U., Yun, R., Huang, J. H., Fernandez-Salas, I., Leal, G., Vasilakis, N., Weaver, S. C., Vitek, C. J., & Paploski, I. A. D. (2017). Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. The American Journal of Tropical Medicine and Hygiene, 97(2), 330.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Diallo, D., Sall, A. A., Buenemann, M., Chen, R., Faye, O., Diagne, C. T., Faye, O., Ba, Y., Dia, I., Watts, D., & Weaver, S. C. (2012). Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal. PLoS Neglected Tropical Diseases, 6(6), e1649.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wasik, D., Mulchandani, A., & Yates, M. V. (2018). Point-of-use nanobiosensor for detection of dengue virus NS1 antigen in adult Aedes aegypti: A potential tool for improved dengue surveillance. Analytical Chemistry, 90(1), 679–684.

    Article  CAS  PubMed  Google Scholar 

  81. Pedraza-Escalona, M., Guzmán-Bringas, O., Arrieta-Oliva, H. I., Gómez-Castellano, K., Salinas-Trujano, J., Torres-Flores, J., Muñoz-Herrera, J. C., Camacho-Sandoval, R., Contreras-Pineda, P., Chacón-Salinas, R., & Pérez-Tapia, S. M. (2021). Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. BMC Infectious Diseases, 21(1), 1–11.

    Article  Google Scholar 

  82. Singh, A., Kumar, A., Yadav, R., Uversky, V. N., & Giri, R. (2018). Deciphering the dark proteome of Chikungunya virus. Scientific Reports, 8(1), 1–10.

    Google Scholar 

  83. Cajigas, S., Alzate, D., & Orozco, J. (2020). Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchimica Acta, 187, 1–10.

    Article  Google Scholar 

  84. Steinmetz, M., Lima, D., Viana, A. G., Fujiwara, S. T., Pessôa, C. A., Etto, R. M., & Wohnrath, K. (2019). A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika virus detection. Biosensors and Bioelectronics, 141, 111351.

    Article  CAS  PubMed  Google Scholar 

  85. Afsahi, S., Lerner, M. B., Goldstein, J. M., Lee, J., Tang, X., Bagarozzi, D. A., Pan, D., Locascio, L., Walker, A., Barron, F., & Goldsmith, B. R. (2018). Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors and Bioelectronics, 100, 85–88.

    Article  CAS  PubMed  Google Scholar 

  86. Tripathi, M. N., Jangir, P., Rai, S., Gangwar, M., Nath, G., Saxena, P. S., & Srivastava, A. (2023). A novel approach for rapid and sensitive detection of Zika virus utilizing silver Nanoislands as SERS platform. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 302, 123045.

    Article  CAS  PubMed  Google Scholar 

  87. El Muttaqien, S., Khoris, I. M., Widayanti, T., Pambudi, S., & Park, E. Y. (2023). Simple, versatile, and practical impedimetric immunosensor based on gold nanoparticle-polyaniline nanocomposite for clinical dengue virus detection. Biochemical Engineering Journal, 198, 109028.

    Article  Google Scholar 

  88. Duyen, V. T. C., Van Toi, V., Van Hoi, T., & Truong, P. L. (2023). A novel colorimetric biosensor for rapid detection of dengue virus upon acid-induced aggregation of colloidal gold. Analytical Methods, 15(32), 3991–3999.

    Article  Google Scholar 

  89. Palomar, Q., Gondran, C., Marks, R., Cosnier, S., & Holzinger, M. (2018). Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays. Electrochimica Acta, 274, 84–90.

    Article  CAS  Google Scholar 

  90. Solanki, S., Soni, A., Pandey, M., Biradar, A., & Sumana, G. (2018). Langmuir-Blodgett nanoassemblies of the MoS2–Au composite at the air–water interface for dengue detection. ACS Applied Materials & Interfaces, 10(3), 3020–3028.

    Article  CAS  Google Scholar 

  91. Odeh, A. A., Al-Douri, Y., Voon, C. H., Mat Ayub, R., Gopinath, S. C. B., Odeh, R. A., Ameri, M., & Bouhemadou, A. (2017). A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of Dengue serotype 2. Microchimica Acta, 184(7), 2211–2218.

    Article  Google Scholar 

  92. Peh, A. E. K., & Li, S. F. Y. (2013). Dengue virus detection using impedance measured across nanoporous aluminamembrane. Biosensors and Bioelectronics, 42, 391–396.

    Article  CAS  PubMed  Google Scholar 

  93. Martinez-Liu, C., Machain-Williams, C., Martinez-Acuña, N., Lozano-Sepulveda, S., Galan-Huerta, K., Arellanos-Soto, D., Meléndez-Villanueva, M., Ávalos-Nolazco, D., Pérez-Ibarra, K., Galindo-Rodríguez, S., & de Jesús Garza-Juarez, A. (2022). Development of a rapid gold nanoparticle-based lateral flow immunoassay for the detection of Dengue virus. Biosensors, 12(7), 495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deng, J., & Toh, C.-S. (2013). Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors, 13(6), 7774–7785.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Anusha, J., Kim, B. C., Yu, K.-H., & Raj, C. J. (2019). Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosensors and Bioelectronics, 142, 111511.

    Article  CAS  PubMed  Google Scholar 

  96. Nosrati, R., Golichenari, B., Nezami, A., Taghdisi, S. M., Karimi, B., Ramezani, M., Abnous, K., & Shaegh, S. A. M. (2017). Helicobacter pylori point-of-care diagnosis: Nano-scale biosensors and microfluidic systems. TrAC Trends in Analytical Chemistry, 97, 428–444.

    Article  CAS  Google Scholar 

  97. Pumera, M., Sanchez, S., Ichinose, I., & Tang, J. (2007). Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 123(2), 1195–1205.

    Article  CAS  Google Scholar 

  98. Nasrin, F., Chowdhury, A. D., Ganganboina, A. B., Achadu, O. J., Hossain, F., Yamazaki, M., & Park, E. Y. (2020). Fluorescent and electrochemical dual-mode detection of Chikungunya virus E1 protein using fluorophore-embedded and redox probe-encapsulated liposomes. Microchimica Acta, 187, 1–11.

    Article  Google Scholar 

  99. Misra, R., Acharya, S., & Sushmitha, N. (2022). Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Reviews in Medical Virology, 32(2), e2267. https://doi.org/10.1002/rmv.2267

    Article  CAS  PubMed  Google Scholar 

  100. Ao, H., Qian, Z., Zhu, Y., Zhao, M., Tang, C., Huang, Y., Feng, H., & Wang, A. (2016). A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosensors and Bioelectronics, 86, 542–547.

    Article  CAS  PubMed  Google Scholar 

  101. Nasrin, F., Chowdhury, A. D., Ganganboina, A. B., Achadu, O. J., Hossain, F., Yamazaki, M., & Park, E. Y. (2020). Fluorescent and electrochemical dual-mode detection of Chikungunya virus E1 protein using fluorophore-embedded and redox probe-encapsulated liposomes. Microchimica Acta, 187(12), 1–11.

    Article  Google Scholar 

  102. Nasrin, F., Chowdhury, A. D., Takemura, K., Kozaki, I., Honda, H., Adegoke, O., & Park, E. Y. (2020). Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Analytica Chimica Acta, 1109, 148–157.

    Article  CAS  PubMed  Google Scholar 

  103. Pasinszki, T., & Krebsz, M. (2019). Advances in celiac disease testing. Advances in Clinical Chemistry, 91, 1–29.

    Article  CAS  PubMed  Google Scholar 

  104. Benito-Pena, E., Valdés, M. G., Glahn-Martinez, B., & Moreno-Bondi, M. C. (2016). Fluorescence based fiber optic and planar waveguide biosensors. A review. Analytica chimica acta, 943, 17–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, C., & Wang, J. (2020). Optical biosensors: An exhaustive and comprehensive review. The Analyst, 145(5), 1605–1628.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. George, A., Amrutha, M., Srivastava, P., Sunil, S., Sai, V., & Srinivasan, R. (2021). Development of a U-bent plastic optical fiber biosensor with plasmonic labels for the detection of chikungunya non-structural protein 3. The Analyst, 146(1), 244–252.

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Camara, A. R., Gouvêa, P. M., Dias, A. C. M., Braga, A. M., Dutra, R. F., de Araujo, R. E., & Carvalho, I. C. (2013). Dengue immunoassay with an LSPR fiber optic sensor. Optics Express, 21(22), 27023–27031.

    Article  ADS  PubMed  Google Scholar 

  108. Zhang, J., & Zhao, J. (2019). Immuno-biosensor. Nano-inspired biosensors for protein assay with clinical applications (pp. 115–137). Elsevier.

    Chapter  Google Scholar 

  109. Figueiredo, A., Vieira, N. C., Dos Santos, J. F., Janegitz, B. C., Aoki, S. M., Junior, P. P., Lovato, R. L., Nogueira, M. L., Zucolotto, V., & Guimaraes, F. E. (2015). Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Scientific Reports, 5(1), 1–5. https://europepmc.org/article/pmc/4297984

    Article  Google Scholar 

  110. Sinawang, P. D., Rai, V., Ionescu, R. E., & Marks, R. S. (2016). Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosensors and Bioelectronics, 77, 400–408.

    Article  CAS  PubMed  Google Scholar 

  111. Tai, D.-F., Lin, C.-Y., Wu, T.-Z., & Chen, L.-K. (2005). Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Analytical Chemistry, 77(16), 5140–5143.

    Article  CAS  PubMed  Google Scholar 

  112. Antunes, P., Watterson, D., Parmvi, M., Burger, R., Boisen, A., Young, P., Cooper, M. A., Hansen, M. F., Ranzoni, A., & Donolato, M. (2015). Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 5(1), 1–10.

    Article  Google Scholar 

  113. Dias, A. C. M., Gomes-Filho, S. L., Silva, M. M., & Dutra, R. F. (2013). A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. Biosensors and Bioelectronics, 44, 216–221.

    Article  CAS  PubMed  Google Scholar 

  114. Park, G., Kim, H.-O., Lim, J.-W., Park, C., Yeom, M., Song, D., & Haam, S. (2022). Rapid detection of influenza A (H1N1) virus by conductive polymer-based nanoparticle via optical response to virus-specific binding. Nano Research, 15(3), 2254–2262.

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Atias, D., Liebes, Y., Chalifa-Caspi, V., Bremand, L., Lobel, L., Marks, R. S., & Dussart, P. (2009). Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans. Sensors and actuators B: Chemical, 140(1), 206–215.

    Article  CAS  Google Scholar 

  116. Lidya, B., Santoso, B., Yusuf, M., Alisyahbana, B., & Subroto, T. (2018). Application of malva nut gum as bioreductor and stabilizer on gold nanoparticle synthesis: Preparation of Chikungunya immunoassay biosensor. Asian Journal of Medicine and Biomedicine, 8.

  117. Mardekian, S. K., & Roberts, A. L. (2015). Diagnostic options and challenges for dengue and chikungunya viruses. BioMed Research International. https://doi.org/10.1155/2015/834371

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nasrin, F., Tsuruga, K., Utomo, D. I. S., Chowdhury, A. D., & Park, E. Y. (2021). Design and analysis of a single system of impedimetric biosensors for the detection of mosquito-borne viruses. Biosensors, 11(10), 376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saraf, N., Villegas, M., Willenberg, B. J., & Seal, S. (2019). Multiplex viral detection platform based on a aptamers-integrated microfluidic channel. ACS Omega, 4(1), 2234–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharma, S., Pardasani, D., Dash, P. K., Parida, M., & Dubey, D. K. (2020). Development of magnetic bead based sample extraction coupled polymerase spiral reaction for rapid on-site detection of Chikungunya virus. Scientific Reports, 10(1), 1–8.

    Google Scholar 

  121. Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M., & Parak, W. J. (2008). Biological applications of gold nanoparticles. Chemical Society Reviews, 37(9), 1896–1908.

    Article  CAS  PubMed  Google Scholar 

  122. Carter, J. R., Balaraman, V., Kucharski, C. A., Fraser, T. S., & Fraser, M. J. (2013). A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virology Journal, 10(1), 1–15.

    Article  Google Scholar 

  123. Burdușel, A.-C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kaushik, S., Sharma, V., Chhikara, S., Yadav, J., & Kaushik, S. (2019). Anti-chikungunya activity of green synthesized silver nanoparticles using Carica papaya leaves in animal cell culture model. Asian Journal of Pharmaceutical and Clinical Research, 12(6), 170–174.

    CAS  Google Scholar 

  125. Yupapin, P., Trabelsi, Y., Vigneswaran, D., Taya, S. A., Daher, M. G., & Colak, I. (2022a). Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics, 1–7

  126. Díaz-González, M., de la Escosura-Muñiz, A., Fernandez-Argüelles, M. T., Alonso, F. J. G., & Costa-Fernandez, J. M. (2020). Quantum dot bioconjugates for diagnostic applications. Surface-modified nanobiomaterials for electrochemical and biomedicine applications (pp. 133–176). Springer.

    Chapter  Google Scholar 

  127. Jalal, N. R., Mehrbod, P., Shojaei, S., Labouta, H. I., Mokarram, P., Afkhami, A., Madrakian, T., Los, M. J., Schaafsma, D., Giersig, M., Ahmadi, M., & Ghavami, S. (2021). Magnetic nanomaterials in microfluidic sensors for virus detection: A review. ACS Applied Nano Materials, 4(5), 4307–4328.

    Article  Google Scholar 

  128. Nguyen, M. D., Tran, H.-V., Xu, S., & Lee, T. R. (2021). Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 11301.

    Article  CAS  PubMed  Google Scholar 

  129. Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International. https://doi.org/10.1155/2016/7840161

    Article  PubMed  PubMed Central  Google Scholar 

  130. Peng, D., Yang, Y., Que, M., Ding, Y., Wu, M., Deng, X., He, Q., Ma, X., Li, X., & Qiu, H. (2023). Partially oxidized MoS2 nanosheets with high water-solubility to enhance the peroxidase-mimic activity for sensitive detection of glutathione. Analytica Chimica Acta, 1250, 340968.

    Article  CAS  PubMed  Google Scholar 

  131. Xia, C., Xu, L., Li, Z., & Guo, L. (2023). Sulfur defect-engineered MoS2 nanosheets with enhanced peroxidase-like activity. Applied Surface Science, 635, 157777.

    Article  CAS  Google Scholar 

  132. Huang, K.-J., Liu, Y.-J., Wang, H.-B., Wang, Y.-Y., & Liu, Y.-M. (2014). Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosensors and Bioelectronics, 55, 195–202.

    Article  CAS  PubMed  Google Scholar 

  133. Yan, L., Shi, H., Sui, X., Deng, Z., & Gao, L. (2017). MoS 2-DNA and MoS 2 based sensors. Rsc Advances, 7(38), 23573–23582.

    Article  ADS  CAS  Google Scholar 

  134. Shukla, S., Grover, N., & Arora, P. (2023). Resolution enhancement using a multi-layered Aluminum-based plasmonic device for chikungunya virus detection. Optical and Quantum Electronics, 55(3), 274.

    Article  CAS  Google Scholar 

  135. Yupapin, P., Trabelsi, Y., Vigneswaran, D., Taya, S. A., Daher, M. G., & Colak, I. (2022). Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics, 17(3), 1315–1321.

    Article  CAS  Google Scholar 

  136. Van Tuan, D., Ngan, D. T. T., Thuy, N. T., Lan, H., Nguyet, N. T., Van Thu, Vu., Hung, V.-P., & Tam, P. D. (2020). Effect of nanostructured MoS2 morphology on the glucose sensing of electrochemical biosensors. Current Applied Physics, 20(9), 1090–1096.

    Article  ADS  Google Scholar 

  137. Daher, M. G., Alsalman, O., Ahmed, N. M., Sassi, I., Sorathiya, V., Tsui, H. C. L., & Patel, S. K. (2023). Modeling of a novel chikungunya virus detector based on silicon and titanium nitride multilayer thin films. Optik, 287, 171136.

    Article  ADS  CAS  Google Scholar 

  138. Jain, J., Nayak, K., Tanwar, N., Gaind, R., Bhupendra Gupta, J. S., Shastri, R. K., Bhatnagar, M. K., Kaja, A. C., & Sunil, S. (2017). Clinical, serological, and virological analysis of 572 chikungunya patients from 2010 to 2013 in India. Clinical Infectious Diseases, 65(1), 133–140.

    Article  CAS  PubMed  Google Scholar 

  139. Syahir, A., Usui, K., Tomizaki, K.-Y., Kajikawa, K., & Mihara, H. (2015). Label and label-free detection techniques for protein microarrays. Microarrays, 4(2), 228–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Falina, S., Anuar, K., Shafiee, S. A., Juan, J. C., Manaf, A. A., Kawarada, H., & Syamsul, M. (2022). Two-dimensional non-carbon materials-based electrochemical printed sensors: An updated review. Sensors, 22(23), 9358.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, J., Drelich, A. J., Hopkins, C. M., & Mecozzi, S. (2022). Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS-CoV-2 testing development. WIREs Nanomedicine and Nanobiotechnology, 14(1), e1754. https://doi.org/10.1002/wnan.1754

    Article  CAS  PubMed  Google Scholar 

  142. Draz, M. S., & Shafiee, H. (2018). Applications of gold nanoparticles in virus detection. Theranostics, 8(7), 1985–2017. https://doi.org/10.7150/thno.23856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hu, X., Zhang, Y., Ding, T., Liu, J., & Zhao, H. (2020). Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol, 8, 990.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kumar, C. S., Hormes, J., & Leuschner, C. (2006). Nanofabrication towards biomedical applications: Techniques, tools, applications, and impact. Wiley.

    Google Scholar 

  145. Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20), 8996–9031. https://doi.org/10.7150/thno.45413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ghosh, U., Sayef Ahammed, K., Mishra, S., & Bhaumik, A. (2022). The emerging roles of silver nanoparticles to target viral life cycle and detect viral pathogens. Chemistry–An Asian Journal, 17(5), e202101149.

    Article  CAS  PubMed  Google Scholar 

  147. Deroco, P. B., Junior, D. W., & Kubota, L. T. (2021). Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors and Actuators B: Chemical, 349, 130821.

    Article  CAS  Google Scholar 

  148. Pirzada, M., & Altintas, Z. (2022). Nanomaterials for virus sensing and tracking. Chemical Society Reviews, 51(14), 5805–5841. https://pubs.rsc.org/en/content/articlelanding/2022/cs/d1cs01150b

    Article  CAS  PubMed  Google Scholar 

  149. Sharma, P., Hasan, M. R., Khanuja, M., & Narang, J. (2023). Carbon ink printed flexible glove-based aptasensor for rapid and point of care detection of Chikungunya virus. Process Biochemistry, 133, 1–10. https://www.sciencedirect.com/science/article/abs/pii/S1359511323002623

    Article  CAS  Google Scholar 

  150. Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. M., Lijmer, J. G., Moher, D. R. D., & de Vet, H. C. W. (2003). Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/CCLM.2003.012

    Article  PubMed  Google Scholar 

  151. Song, M., Yang, M., & Hao, J. (2021). Pathogenic virus detection by optical nanobiosensors. Cell Reports Physical Science. https://doi.org/10.1016/j.xcrp.2020.100288

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all the scientists of the world who advance science and cure pain with their efforts.

Funding

The authors received no financial support for the authorship and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

OG, SY, HA, and AK wrote the main manuscript text and SY and prepared the figures. SASH, ZS, MG, JA, MH, reviewed and editing and OG, and HZ corresponding authors.

Corresponding authors

Correspondence to Omid Gholizadeh or Hesam Zendehdel Moghadam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have full consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrtash, S.A., Ghnim, Z.S., Ghaheri, M. et al. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01052-6

Keywords

Navigation