Skip to main content

Advertisement

Log in

Preclinical Evaluation of virus-like particle Vaccine Against Carbonic Anhydrase IX Efficacy in a Mouse Breast Cancer Model System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrase IX (CAIX) is a cancer-associated membrane protein frequently overexpressed in hypoxic solid tumours leading to enhanced tumour cell survival and invasion, and it has been proposed to be an attractive tumour-specific molecule for antibody-mediated targeting. This study aimed to generate a virus-like particle (VLP)-based CAIX vaccine candidate and evaluate its efficacy in a mouse model of breast cancer. The prototype murine vaccine was developed based on the ssRNA bacteriophage Qbeta VLPs with chemically coupled murine CAIX protein catalytic domains on their surfaces. The vaccine was shown to efficiently break the natural B cell tolerance against autologous murine CAIX and to induce high-titre Th1-oriented IgG responses in the BALB/c mice. This vaccine was tested in a therapeutic setting by using a triple-negative breast cancer mouse model system comprising 4T1, 4T1-Car9KI and 4T1-Car9KO cells, the latter representing positive and negative controls for murine CAIX production, respectively. The humoural immune responses induced in tumour-bearing animals were predominantly of Th1-type and higher anti-mCAIXc titres correlated with slower growth and lung metastasis development of 4T1 tumours constitutively expressing mCAIX in vivo in the syngeneic host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CAIX:

Carbonic anhydrase IX

CMV:

Cytomegalovirus

H&E:

Haematoxylin and eosin

IVC:

Individually ventilated cage

KO:

Knock-out

KI:

Knock-in

mCAIXc:

Catalytic domain of murine carbonic anhydrase IX

ssRNA:

Single-stranded RNA

SPF:

Specific pathogen-free

TAA:

Tumour-associated antigen

TNBC:

Triple-negative breast cancer

VLP:

Virus-like particle

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249.

    PubMed  Google Scholar 

  2. Couzin-Frankel, J. (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science, 342, 1432–1433.

    Article  CAS  PubMed  Google Scholar 

  3. Antonarelli, G., Corti, C., Tarantino, P., Ascione, L., Cortes, J., Romero, P., Mittendorf, E. A., Disis, M. L., & Curigliano, G. (2021). Therapeutic cancer vaccines revamping: Technology advancements and pitfalls. Annals of Oncology, 32, 1537–1551.

    Article  CAS  PubMed  Google Scholar 

  4. Buonaguro, L., & Tagliamonte, M. (2020). Selecting target antigens for cancer vaccine development. Vaccines (Basel). https://doi.org/10.3390/vaccines8040615

    Article  PubMed  Google Scholar 

  5. Pumpens, P., Renhofa, R., Dishlers, A., Kozlovska, T., Ose, V., Pushko, P., Tars, K., Grens, E., & Bachmann, M. F. (2016). The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology, 59, 74–110.

    Article  CAS  PubMed  Google Scholar 

  6. Jennings, G. T., & Bachmann, M. F. (2008). The coming of age of virus-like particle vaccines. Biological Chemistry, 389, 521–536.

    Article  CAS  PubMed  Google Scholar 

  7. Rumnieks, J., & Tars, K. (2018). Protein-RNA Interactions in the Single-Stranded RNA Bacteriophages. SubCellular Biochemistry, 88, 281–303.

    Article  CAS  PubMed  Google Scholar 

  8. Pickett, G. G., & Peabody, D. S. (1993). Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Research, 21, 4621–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieknina, I., Cernova, D., Rumnieks, J., & Tars, K. (2020). Novel ssRNA phage VLP platform for displaying foreign epitopes by genetic fusion. Vaccine, 38, 6019–6026.

    Article  CAS  PubMed  Google Scholar 

  10. Bachmann, M. F., Zeltins, A., Kalnins, G., Balke, I., Fischer, N., Rostaher, A., Tars, K., & Favrot, C. (2018). Vaccination against IL-31 for the treatment of atopic dermatitis in dogs. The Journal of Allergy and Clinical Immunology, 142(279–281), e271.

    Google Scholar 

  11. Fettelschoss-Gabriel, A., Fettelschoss, V., Olomski, F., Birkmann, K., Thoms, F., Buhler, M., Kummer, M., Zeltins, A., Kundig, T. M., & Bachmann, M. F. (2019). Active vaccination against interleukin-5 as long-term treatment for insect-bite hypersensitivity in horses. Allergy, 74, 572–582.

    Article  CAS  PubMed  Google Scholar 

  12. Tissot, A. C., Maurer, P., Nussberger, J., Sabat, R., Pfister, T., Ignatenko, S., Volk, H. D., Stocker, H., Muller, P., Jennings, G. T., Wagner, F., & Bachmann, M. F. (2008). Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: A double-blind, randomised, placebo-controlled phase IIa study. Lancet, 371, 821–827.

    Article  CAS  PubMed  Google Scholar 

  13. Cavelti-Weder, C., Timper, K., Seelig, E., Keller, C., Osranek, M., Lassing, U., Spohn, G., Maurer, P., Muller, P., Jennings, G. T., Willers, J., Saudan, P., Donath, M. Y., & Bachmann, M. F. (2016). Development of an interleukin-1beta vaccine in patients with type 2 diabetes. Molecular Therapy, 24, 1003–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, D. K., Moniz, R. J., Xu, Z., Sun, J., Signoretti, S., Zhu, Q., & Marasco, W. A. (2015). Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Molecular Cancer, 14, 119.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Opavsky, R., Pastorekova, S., Zelnik, V., Gibadulinova, A., Stanbridge, E. J., Zavada, J., Kettmann, R., & Pastorek, J. (1996). Human MN/CA9 gene, a novel member of the carbonic anhydrase family: Structure and exon to protein domain relationships. Genomics, 33, 480–487.

    Article  CAS  PubMed  Google Scholar 

  16. Nogradi, A. (1998). The role of carbonic anhydrases in tumors. American Journal of Pathology, 153, 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Kuijk, S. J., Yaromina, A., Houben, R., Niemans, R., Lambin, P., & Dubois, L. J. (2016). Prognostic significance of carbonic anhydrase IX expression in cancer patients: A meta-analysis. Frontiers in Oncology, 6, 69.

    PubMed  PubMed Central  Google Scholar 

  18. Pastorek, J., Pastorekova, S., Callebaut, I., Mornon, J. P., Zelnik, V., Opavsky, R., Zat’ovicova, M., Liao, S., Portetelle, D., Stanbridge, E. J., et al. (1994). Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene, 9, 2877–2888.

    CAS  PubMed  Google Scholar 

  19. Queen, A., Bhutto, H. N., Yousuf, M., Syed, M. A., & Hassan, M. I. (2022). Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Seminars in Cancer Biology, 86, 899–913.

    Article  CAS  PubMed  Google Scholar 

  20. Pastorekova, S., & Gillies, R. J. (2019). The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer and Metastasis Reviews, 38, 65–77.

    Article  CAS  PubMed  Google Scholar 

  21. Singh, S., Lomelino, C. L., Mboge, M. Y., Frost, S. C., & McKenna, R. (2018). Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules. https://doi.org/10.3390/molecules23051045

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kciuk, M., Gielecinska, A., Mujwar, S., Mojzych, M., Marciniak, B., Drozda, R., & Kontek, R. (2022). Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37, 1278–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campos, N. S. P., Souza, B. S., Silva, G., Porto, V. A., Chalbatani, G. M., Lagreca, G., Janji, B., & Suarez, E. R. (2022). Carbonic anhydrase IX: A renewed target for cancer immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers14061392

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bleumer, I., Knuth, A., Oosterwijk, E., Hofmann, R., Varga, Z., Lamers, C., Kruit, W., Melchior, S., Mala, C., Ullrich, S., De Mulder, P., Mulders, P. F., & Beck, J. (2004). A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. British Journal of Cancer, 90, 985–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chamie, K., Donin, N. M., Klopfer, P., Bevan, P., Fall, B., Wilhelm, O., Storkel, S., Said, J., Gambla, M., Hawkins, R. E., Jankilevich, G., Kapoor, A., Kopyltsov, E., Staehler, M., Taari, K., Wainstein, A. J. A., Pantuck, A. J., & Belldegrun, A. S. (2017). Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: The ARISER randomized clinical trial. JAMA Oncology, 3, 913–920.

    Article  PubMed  Google Scholar 

  26. Hua, Z., White, J., & Zhou, J. (2022). Cancer stem cells in TNBC. Seminars in Cancer Biology, 82, 26–34.

    Article  CAS  PubMed  Google Scholar 

  27. Ong, C. H. C., Lee, D. Y., Lee, B., Li, H., Lim, J. C. T., Lim, J. X., Yeong, J. P. S., Lau, H. Y., Thike, A. A., Tan, P. H., & Iqbal, J. (2022). Hypoxia-regulated carbonic anhydrase IX (CAIX) protein is an independent prognostic indicator in triple negative breast cancer. Breast Cancer Research, 24, 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ivanova, L., Zandberga, E., Silina, K., Kalnina, Z., Abols, A., Endzelins, E., Vendina, I., Romanchikova, N., Hegmane, A., Trapencieris, P., Eglitis, J., & Line, A. (2015). Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemotherapy and Pharmacology, 75, 235–246.

    Article  CAS  PubMed  Google Scholar 

  29. Pastorekova, S., Parkkila, S., Parkkila, A. K., Opavsky, R., Zelnik, V., Saarnio, J., & Pastorek, J. (1997). Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology, 112, 398–408.

    Article  CAS  PubMed  Google Scholar 

  30. Takacova, M., Barathova, M., Zatovicova, M., Golias, T., Kajanova, I., Jelenska, L., Sedlakova, O., Svastova, E., Kopacek, J., & Pastorekova, S. (2019). Carbonic anhydrase IX-mouse versus human. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21010246

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leitans, J., Kazaks, A., Balode, A., Ivanova, J., Zalubovskis, R., Supuran, C. T., & Tars, K. (2015). Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX. Journal of Medicinal Chemistry, 58, 9004–9009.

    Article  CAS  PubMed  Google Scholar 

  32. Brune, K. D., Lieknina, I., Sutov, G., Morris, A. R., Jovicevic, D., Kalnins, G., Kazaks, A., Kluga, R., Kastaljana, S., Zajakina, A., Jansons, J., Skrastina, D., Spunde, K., Cohen, A. A., Bjorkman, P. J., Morris, H. R., Suna, E., & Tars, K. (2021). N-terminal modification of Gly-his-tagged proteins with azidogluconolactone. ChemBioChem, 22, 3199–3207.

    Article  CAS  PubMed  Google Scholar 

  33. Kalniņa, Z.L., I., Koteloviča, S., Petrovska, R., Laugalis, M.T., Skeltona, V., Jansons, J., Kreishmane, M., Tārs, K. (2023) Development of 4T1 breast cancer mouse model system for preclinical carbonic anhydrase IX studies. Submitted to Heliyon.

  34. G*Power Statistical Power Analyses for Mac and Windows. Available from: http://www.gpower.hhu.de/.

  35. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  36. FELASA Working Group on Revision of Guidelines for Health Monitoring of Rodents and Rabbits, Mahler-Convenor, M., Berard, M., Feinstein, R., Gallagher, A., Illgen-Wilcke, B., Pritchett-Corning, K., & Raspa, M. (2014). FELASA recommendations for the health monitoring of mouse rat hamster guinea pig and rabbit colonies in breeding and experimental units. Laboratory Animals, 48, 178–192.

    Article  Google Scholar 

  37. Workman, P., Aboagye, E. O., Balkwill, F., Balmain, A., Bruder, G., Chaplin, D. J., Double, J. A., Everitt, J., Farningham, D. A., Glennie, M. J., Kelland, L. R., Robinson, V., Stratford, I. J., Tozer, G. M., Watson, S., Wedge, S. R., & Eccles, S. A. (2010). Guidelines for the welfare and use of animals in cancer research. British Journal of Cancer, 102, 1555–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Expert Working Group (Animal Welfare Body of the European Commission). (2013). Examples to illustrate the process of severity classification, day-to-day assessment and actual severity assessment. European Commission. [Cited 1 Mar 2021]. Available from: https://ec.europa.eu/environment/chemicals/lab_animals/pdf/examples.pdf.

  39. Slaoui, M., & Fiette, L. (2011). Histopathology procedures: From tissue sampling to histopathological evaluation. Methods in Molecular Biology, 691, 69–82.

    Article  CAS  PubMed  Google Scholar 

  40. Pumpens, P., & Pushko, P. (2022). Virus-Like Particles: A Comprehensive Guide. CRC Press.

    Book  Google Scholar 

  41. Nimmerjahn, F., & Ravetch, J. V. (2005). Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science, 310, 1510–1512.

    Article  CAS  PubMed  Google Scholar 

  42. Vu, T., & Claret, F. X. (2012). Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Frontiers in Oncology, 2, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bruhns, P. (2012). Properties of mouse and human IgG receptors and their contribution to disease models. Blood, 119, 5640–5649.

    Article  CAS  PubMed  Google Scholar 

  44. Steffens, M. G., Boerman, O. C., Oosterwijk-Wakka, J. C., Oosterhof, G. O., Witjes, J. A., Koenders, E. B., Oyen, W. J., Buijs, W. C., Debruyne, F. M., Corstens, F. H., & Oosterwijk, E. (1997). Targeting of renal cell carcinoma with iodine-131-labeled chimeric monoclonal antibody G250. Journal of Clinical Oncology, 15, 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  45. Gut, M. O., Parkkila, S., Vernerova, Z., Rohde, E., Zavada, J., Hocker, M., Pastorek, J., Karttunen, T., Gibadulinova, A., Zavadova, Z., Knobeloch, K. P., Wiedenmann, B., Svoboda, J., Horak, I., & Pastorekova, S. (2002). Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology, 123, 1889–1903.

    Article  CAS  PubMed  Google Scholar 

  46. Leppilampi, M., Karttunen, T. J., Kivela, J., Gut, M. O., Pastorekova, S., Pastorek, J., & Parkkila, S. (2005). Gastric pit cell hyperplasia and glandular atrophy in carbonic anhydrase IX knockout mice: Studies on two strains C57/BL6 and BALB/C. Transgenic Research, 14, 655–663.

    Article  CAS  PubMed  Google Scholar 

  47. Lou, Y., Preobrazhenska, O., auf dem Keller, U., Sutcliffe, M., Barclay, L., McDonald, P. C., Roskelley, C., Overall, C. M., & Dedhar, S. (2008). Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Developmental Dynamics, 237, 2755–2768.

    Article  CAS  PubMed  Google Scholar 

  48. Pulaski, B. A., & Ostrand-Rosenberg, S. (2001). Mouse 4T1 breast tumor model. Current Protocols in Immunology. https://doi.org/10.1002/0471142735.im2002s39

    Article  PubMed  Google Scholar 

  49. Czajka-Francuz, P., Prendes, M. J., Mankan, A., Quintana, A., Pabla, S., Ramkissoon, S., Jensen, T. J., Peiro, S., Severson, E. A., Achyut, B. R., Vidal, L., Poelman, M., & Saini, K. S. (2023). Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Frontiers in Oncology, 13, 1200646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, Y., Li, S., Tang, H., Meng, X., & Zheng, Q. (2023). Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Frontiers in Immunology, 14, 1153990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chafe, S. C., McDonald, P. C., Saberi, S., Nemirovsky, O., Venkateswaran, G., Burugu, S., Gao, D., Delaidelli, A., Kyle, A. H., Baker, J. H. E., Gillespie, J. A., Bashashati, A., Minchinton, A. I., Zhou, Y., Shah, S. P., & Dedhar, S. (2019). Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunology Research, 7, 1064–1078.

    Article  CAS  PubMed  Google Scholar 

  52. Giatromanolaki, A., Harris, A. L., Banham, A. H., Contrafouris, C. A., & Koukourakis, M. I. (2020). Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: Correlation with regulatory FOXP3+T-cell tumour stroma infiltration. British Journal of Cancer, 122, 1205–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chafe, S. C., Lou, Y., Sceneay, J., Vallejo, M., Hamilton, M. J., McDonald, P. C., Bennewith, K. L., Moller, A., & Dedhar, S. (2015). Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Research, 75, 996–1008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare no competing interests. We are thankful to Dr. Juris Jansons for his technical support with electron microscopy. This study was supported by the European Regional Development Fund (ERDF) grant number 1.1.1.2/VIAA/4/20/728.

Funding

European Regional Development Fund,1.1.1.2/VIAA/4/20/728, Zane Kalniņa.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the manuscript as described: conceptualisation: KT and ZK; methodology: ZK, IL, IA and AK; formal analysis and investigation: ZK, IL and VS; funding acquisition: ZK; project administration: ZK; supervision: KT; writing—original draft preparation: ZK and IL; writing—review and editing: all authors; visualisation: ZK.

Corresponding author

Correspondence to Zane Kalniņa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalniņa, Z., Liekniņa, I., Skeltona, V. et al. Preclinical Evaluation of virus-like particle Vaccine Against Carbonic Anhydrase IX Efficacy in a Mouse Breast Cancer Model System. Mol Biotechnol 66, 1206–1219 (2024). https://doi.org/10.1007/s12033-023-01021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01021-5

Keywords

Navigation