Skip to main content
Log in

Induction of Oxidative Stress in Sirtuin Gene-Disrupted Ashbya gossypii Mutants Overproducing Riboflavin

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials analyzed in this study are shown in this published article.

References

  1. You, J., Pan, X., Yang, C., Du, Y., Osire, T., Yang, T., Zhang, X., Xu, M., Xu, G., & Rao, Z. (2021). Microbial production of riboflavin: Biotechnological advances and perspectives. Metabolic Engineering, 68, 46–58.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, G., Dong, F., Lao, X., & Zheng, H. (2021). Strategies to increase the production of biosynthetic riboflavin. Molecular Biotechnology, 63, 909–918.

    Article  CAS  PubMed  Google Scholar 

  3. Gudipati, V., Koch, K., Lienhart, W. D., & Macheroux, P. (2014). The flavoproteome of the yeast Saccharomyces cerevisiae. Biochimie et Biophysica Acta, 1844, 535–544.

    Article  CAS  Google Scholar 

  4. Lienhart, W. D., Gudipati, V., & Macheroux, P. (2013). The human flavoproteome. Archives of Biochemistry and Biophysics, 535, 150–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suwannasom, N., Kao, I., Pruß, A., Georgieva, R., & Bäumler, H. (2020). Riboflavin: The health benefits of a forgotten natural vitamin. International Journal of Molecular Sciences, 21, 950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Udhayabanu, T., Manole, A., Rajeshwari, M., Varalakshmi, P., Houlden, H., & Ashokkumar, B. (2017). Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. Journal of Clinical Medicine, 6, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: A review. British Journal of Nutrition, 111, 1985–1991.

    Article  CAS  PubMed  Google Scholar 

  8. Olfat, N., Ashoori, M., & Saedisomeolia, A. (2022). Riboflavin is an antioxidant: A review update. British Journal of Nutrition, 128, 1887–11895.

    Article  CAS  PubMed  Google Scholar 

  9. Walther, A., & Wendland, J. (2012). Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genetics and Biology, 49, 697–707.

    Article  CAS  PubMed  Google Scholar 

  10. Silva, R., Aguiar, T. Q., Oliveira, R., & Domingues, L. (2019). Light exposure during growth increases riboflavin production, reactive oxygen species accumulation and DNA damage in Ashbya gossypii riboflavin-overproducing strains. FEMS Yeast Research, 19(1), foy114.

    CAS  Google Scholar 

  11. Anam, K., Nasuno, R., & Takagi, H. (2020). A novel mechanism for nitrosative stress tolerance dependent on GTP cyclohydrolase II activity involved in riboflavin synthesis of yeast. Scientific Reports, 10, 6015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, X., Ji, B., Hao, X., Li, X., Eisele, F., Nyström, T., & Petranovic, D. (2020). FMN reduces amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nature Communications, 11, 867.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gumá-Cintrón, Y., Bandyopadhyay, A., Rosado, W., Shu-Hu, W., & Nadathur, G. S. (2015). Transcriptomic analysis of cobalt stress in the marine yeast Debaryomyces hansenii. FEMS Yeast Research. https://doi.org/10.1093/femsyr/fov099

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boretsky, Y. R., Protchenko, O. V., Prokopiv, T. M., Mukalov, I. O., Fedorovych, D. V., & Sibirny, A. A. (2007). Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii. Journal of Basic Microbiology, 47, 371–377.

    Article  CAS  PubMed  Google Scholar 

  15. Kato, T., Azegami, J., Kano, M., El Enshasy, H. A., & Park, E. Y. (2021). Effects of sirtuins on the riboflavin production in Ashbya gossypii. Applied Microbiology and Biotechnology, 105, 7813–7823.

    Article  CAS  PubMed  Google Scholar 

  16. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13, 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shahgaldi, S., & Kahmini, F. R. (2021). A comprehensive review of sirtuins: With a major focus on redox homeostasis and metabolism. Life Sciences, 282, 119803.

    Article  CAS  PubMed  Google Scholar 

  18. Wierman, M. B., & Smith, J. S. (2014). Yeast sirtuins and the regulation of aging. FEMS Yeast Research, 14, 73–88.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, C. K., Chhabra, G., Ndiaye, M. A., Garcia-Peterson, L. M., Mack, N. J., & Ahmad, N. (2018). The role of sirtuins in antioxidant and redox signaling. Antioxidants and Redox Signaling, 28, 643–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srivastava, S. (2016). Emerging therapeutic roles for NAD+ metabolism in mitochondrial and age-related disorders. Clinical and Translational Medicine, 5, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shimizu, K., & Matsuoka, Y. (2019). Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnology Advances, 37, 107441.

    Article  CAS  PubMed  Google Scholar 

  22. Stein, L. R., & Imai, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends in Endocrinology & Metabolism, 23, 420–428.

    Article  CAS  Google Scholar 

  23. Kim, J. K., Park, J., Ryu, T. H., & Nili, M. (2013). Effect of N-acetyl-L-cysteine on Saccharomyces cerevisiae irradiated with gamma-rays. Chemosphere, 92, 512–516.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, M. E., Facca, C., Fatmi, Z., Baïlle, D., Bénakli, S., & Vernis, L. (2016). DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Scientific Reports, 6, 29361.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singh, A., & Xu, Y. J. (2016). The cell killing mechanisms of hydroxyurea. Genes (Basel), 7, 99.

    Article  CAS  PubMed  Google Scholar 

  26. Singh, A., & Xu, Y. J. (2017). Heme deficiency sensitizes yeast cells to oxidative stress induced by hydroxyurea. Journal of Biological Chemistry, 292, 9088–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oscarsson, T., Walther, A., Lengeler, K. B., & Wendland, J. (2017). An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii. FEMS Microbiology Letters. https://doi.org/10.1093/femsle/fnx240

    Article  PubMed  Google Scholar 

  28. Fedoseeva, I. V., Pyatrikas, D. V., Stepanov, A. V., Fedyaeva, A. V., Varakina, N. N., Rusaleva, T. M., Borovskii, G. B., & Rikhvanov, E. G. (2017). The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Scientific Reports, 7, 2586.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, J., Zhai, W., Li, Y., Guo, Y., Zhu, Y., & Lei, & G., Li, J. (2022). Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation. Biochemical Engineering Journal, 181, 108394.

    Article  CAS  Google Scholar 

  30. Kavitha, S., & Chandra, T. S. (2014). Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii. Applied Biochemistry and Biotechnology, 174, 2307–2325.

    Article  CAS  PubMed  Google Scholar 

  31. Cheung, I. M., McGhee, C. N., & Sherwin, T. (2014). Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matirix elements, antioxidants and oxidases in keratoconic stromal cells. Clinical and Experimental Optometry, 97, 349–355.

    Article  PubMed  Google Scholar 

  32. Sanches, S. C., Ramalho, L. N., Mendes-Braz, M., Terra, V. A., Cecchini, R., Augusto, M. J., & Ramalho, F. S. (2014). Riboflavin (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice. Food and Chemical Toxicology, 67, 65–71.

    Article  CAS  PubMed  Google Scholar 

  33. Farah, N., Chin, V. K., Chong, P. P., Lim, W. F., Lim, C. W., Basir, R., Chang, S. K., & Lee, T. Y. (2022). Riboflavin as a promising antimicrobial agent? A multi-perspective review. Current Research in Microbial Sciences, 3, 100111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balaban, B. G., Yılmaz, Ü., Alkım, C., Topaloğlu, A., Kısakesen, H. İ, Holyavkin, C., & Çakar, Z. P. (2019). Evolutionary engineering of an iron-resistant Saccharomyces cerevisiae mutant and its physiological and molecular characterization. Microorganisms, 8, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kocaefe-Özşen, N., Yilmaz, B., Alkım, C., Arslan, M., Topaloğlu, A., Kısakesen, H. L. B., Gülsev, E., & Çakar, Z. P. (2022). Physiological and molecular characterization of an oxidative stress-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. Frontiers in Microbiology, 13, 822864.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Merksamer, P. I., Liu, Y., He, W., Hirschey, M. D., Chen, D., & Verdin, E. (2013). The sirtuins, oxidative stress and aging: An emerging link. Aging (Albany NY), 5, 144–150.

    Article  CAS  PubMed  Google Scholar 

  37. Alam, F., Syed, H., Amjad, S., Baig, M., Khan, T. A., & Rehman, R. (2021). Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Current Research in Physiology, 4, 119–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, X., & Garg, N. J. (2021). Sirtuin control of mitochondrial dysfunction, oxidative stress, and inflammation in chagas disease models. Frontiers in Cellular and Infection Microbiology, 11, 693051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bause, A. S., & Haigis, M. C. (2013). SIRT3 regulation of mitochondrial oxidative stress. Experimental Gerontology, 48, 634–639.

    Article  CAS  PubMed  Google Scholar 

  40. Collins, J. A., Kapustina, M., Bolduc, J. A., Pike, J. F. W., Diekman, B. O., Mix, K., Chubinskaya, S., Eroglu, E., Michel, T., Poole, L. B., Furdui, C. M., & Loeser, R. F. (2021). Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radical Biology and Medicine, 166, 90–103.

    Article  CAS  PubMed  Google Scholar 

  41. Liao, C. Y., & Kennedy, B. K. (2016). SIRT6, oxidative stress, and aging. Cell Research, 26, 143–144.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Manthey, K. C., Rodriguez-Melendez, R., Hoi, J. T., & Zempleni, J. (2006). Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. The Journal of Nutritional Biochemistry, 17, 250–256.

    Article  CAS  PubMed  Google Scholar 

  43. Song, J. Y., Cha, J., Lee, J., & Roe, J. H. (2006). Glutathione reductase and a mitochondrial thioredoxin play overlapping roles in maintaining iron-sulfur enzymes in fission yeast. Eukaryotic Cells, 5, 1857–1865.

    Article  CAS  Google Scholar 

  44. Chen, J., Shen, J., Solem, C., & Jensen, P. R. (2013). Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of riboflavin. Applied and Environmental Microbiology, 79, 6140–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., & Longo, V. D. (2005). Sir2 blocks extreme life-span extension. Cell, 123, 655–667.

    Article  CAS  PubMed  Google Scholar 

  46. Vall-Llaura, N., Mir, N., Garrido, L., Vived, C., & Cabiscol, E. (2019). Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity. Redox Biology, 24, 101229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knieß, R. A., & Mayer, M. P. (2016). The oxidation state of the cytoplasmic glutathione redox system does not correlate with replicative lifespan in yeast. NPJ Aging and Mechanisms of Disease, 2, 16028.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Kohei Kurabayashi (Department of Applied Life Science, Faculty of Agriculture, Shizuoka University) to help our response to reviewers with additional experiments.

Funding

This study was supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C); Grant Number JP21K05390).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were performed by TK, HAEE, and EYP. Material preparation, data collection, and analysis were performed by JA, MK, HAEE, and EYP. The first draft of the manuscript was written by TK, HAEE and EYP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tatsuya Kato.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Azegami, J., Kano, M. et al. Induction of Oxidative Stress in Sirtuin Gene-Disrupted Ashbya gossypii Mutants Overproducing Riboflavin. Mol Biotechnol 66, 1144–1153 (2024). https://doi.org/10.1007/s12033-023-01012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01012-6

Keywords

Navigation