Abstract
Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.
Graphical Abstract
Summary of action of obestatin in skeletal muscle atrophy. (Icon image source: www.flaticon.com; Obestatin structure: PDB id 2JSH)
Similar content being viewed by others
Data Availability
This is a review article. All the data used in the study have been accumulated from the cited references in the article.
Abbreviations
- GPR39:
-
G protein-coupled receptor 39
- Akt:
-
Protein Kinase B
- PI3K:
-
Phosphoinositide 3-kinase
- mTOR:
-
Mammalian Target of Rapamycin
- MAPK:
-
Mitogen-Activated Protein Kinase
- GHSR:
-
Growth Hormone Secretagogue Receptor
- GH:
-
Growth Hormone
- STZ:
-
Streptozotocin
- PGC-1α:
-
Peroxisome proliferator-activated receptor-gamma coactivator-1α
- IGF1:
-
Insulin-like Growth Factor
- FoxO:
-
Forkhead family of transcription factors
- CaMK II:
-
Calcium-calmodulin-dependent protein kinase II
- KLF15:
-
Krüppel-like Factor 15
- AMPK:
-
AMP-activated Protein Kinase
- LC3:
-
Light Chain 3
- AG:
-
Acylated Ghrelin
- UAG:
-
Unacylated Ghrelin
- Ub:
-
Ubiquitin
- 4E-BP1:
-
4E-binding protein 1
References
Nagendra, A. H., Najar, M. A., Bose, B., & Shenoy, P. S. (2022). High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. Journal of Hazardous Materials, 432, 128654. https://doi.org/10.1016/j.jhazmat.2022.128654
Nagendra, A. H., Ray, A., Chaudhury, D., Mitra, A., Ranade, A. V., Bose, B., & Shenoy, P. S. (2022). Sodium fluoride induces skeletal muscle atrophy via changes in mitochondrial and sarcomeric proteomes. PLoS ONE, 17(12), e0279261. https://doi.org/10.1371/journal.pone.0279261
Szondy, Z., Al-Zaeed, N., Tarban, N., Fige, E., Garabuczi, E., & Sarang, Z. (2022). Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: Therapeutic implications. Journal of Cachexia, Sarcopenia and Muscle, 13(4), 1961–1973. https://doi.org/10.1002/jcsm.13024
Merz, K. E., & Thurmond, D. C. (2020). Role of skeletal muscle in insulin resistance and glucose uptake. Comprehensive Physiology, 10(3), 785–809. https://doi.org/10.1002/cphy.c190029
Kang, S. H., Lee, H. A., Kim, M., Lee, E., Sohn, U. D., & Kim, I. (2017). Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. American journal of physiology. Endocrinology and metabolism, 312(6), E495–E507. https://doi.org/10.1152/ajpendo.00389.2016
Chen, X., Chen, W., Wang, D., Ma, L., Tao, J., & Zhang, A. (2023). Subchronic arsenite exposure induced atrophy and erythropoietin sensitivity reduction in skeletal muscle were relevant to declined serum melatonin levels in middle-aged rats. Toxics. https://doi.org/10.3390/toxics11080689
Liu, X., Zhang, Y., Sun, X., Zhang, W., Shi, X., & Xu, S. (2022). Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology, 474, 153226. https://doi.org/10.1016/j.tox.2022.153226
Schiaffino, S., Reggiani, C., Akimoto, T., & Blaauw, B. (2021). Molecular mechanisms of skeletal muscle hypertrophy. Journal of Neuromuscular Diseases, 8(2), 169–183. https://doi.org/10.3233/JND-200568
Wang, T., Xu, H., Wu, S., Guo, Y., Zhao, G., & Wang, D. (2023). Mechanisms underlying the effects of the green tea polyphenol EGCG in sarcopenia prevention and management. Journal of Agriculture and Food Chemistry, 71(25), 9609–9627. https://doi.org/10.1021/acs.jafc.3c02023
Cabezas Perez, R. J., Avila Rodriguez, M. F., & Rosero Salazar, D. H. (2022). Exogenous antioxidants in remyelination and skeletal muscle recovery. Biomedicines. https://doi.org/10.3390/biomedicines10102557
Gortan Cappellari, G., Aleksova, A., Dal Ferro, M., Cannata, A., Semolic, A., Guarnaccia, A., Zanetti, M., Giacca, M., Sinagra, G., & Barazzoni, R. (2023). n-3 PUFA-enriched diet preserves skeletal muscle mitochondrial function and redox state and prevents muscle mass loss in mice with chronic heart failure. Nutrients. https://doi.org/10.3390/nu15143108
Mitra, A., Shanavas, S., Chaudhury, D., Bose, B., Das, U. N., & Shenoy, P. S. (2023). Mitigation of chronic glucotoxicity-mediated skeletal muscle atrophy by arachidonic acid. Life Sciences, 333, 122141. https://doi.org/10.1016/j.lfs.2023.122141
Porporato, P. E., Filigheddu, N., Reano, S., Ferrara, M., Angelino, E., Gnocchi, V. F., Prodam, F., Ronchi, G., Fagoonee, S., Fornaro, M., Chianale, F., Baldanzi, G., Surico, N., Sinigaglia, F., Perroteau, I., Smith, R. G., Sun, Y., Geuna, S., & Graziani, A. (2013). Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. The Journal of Clinical Investigation, 123(2), 611–622. https://doi.org/10.1172/JCI39920
Lund, L. H., Hage, C., Pironti, G., Thorvaldsen, T., Ljung-Faxen, U., Zabarovskaja, S., Shahgaldi, K., Webb, D. L., Hellstrom, P. M., Andersson, D. C., & Stahlberg, M. (2023). Acyl ghrelin improves cardiac function in heart failure and increases fractional shortening in cardiomyocytes without calcium mobilization. European Heart Journal, 44(22), 2009–2025. https://doi.org/10.1093/eurheartj/ehad100
Bora, R. R., Prasad, R., & Khatib, M. N. (2023). Cardio-protective role of a gut hormone obestatin: A narrative review. Cureus. https://doi.org/10.7759/cureus.37972
Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., & Hsueh, A. J. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310(5750), 996–999. https://doi.org/10.1126/science.1117255
Gronberg, M., Tsolakis, A. V., Magnusson, L., Janson, E. T., & Saras, J. (2008). Distribution of obestatin and ghrelin in human tissues: Immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. Journal of Histochemistry and Cytochemistry, 56(9), 793–801. https://doi.org/10.1369/jhc.2008.951145
Alvarez, C. J., Lodeiro, M., Theodoropoulou, M., Camina, J. P., Casanueva, F. F., & Pazos, Y. (2009). Obestatin stimulates Akt signalling in gastric cancer cells through beta-arrestin-mediated epidermal growth factor receptor transactivation. Endocrine-Related Cancer, 16(2), 599–611. https://doi.org/10.1677/ERC-08-0192
Lv, Y., Liang, T., Wang, G., & Li, Z. (2018). Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Bioscience Reports. https://doi.org/10.1042/BSR20181061
Ibrahim Abdalla, M. M. (2015). Ghrelin—physiological functions and regulation. European endocrinology, 11(2), 90–95. https://doi.org/10.17925/EE.2015.11.02.90
Filigheddu, N., Gnocchi, V. F., Coscia, M., Cappelli, M., Porporato, P. E., Taulli, R., Traini, S., Baldanzi, G., Chianale, F., Cutrupi, S., Arnoletti, E., Ghe, C., Fubini, A., Surico, N., Sinigaglia, F., Ponzetto, C., Muccioli, G., Crepaldi, T., & Graziani, A. (2007). Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Molecular Biology of the Cell, 18(3), 986–994. https://doi.org/10.1091/mbc.e06-05-0402
Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 619–624. https://doi.org/10.1097/MCO.0b013e328365b9be
Sugiyama, M., Yamaki, A., Furuya, M., Inomata, N., Minamitake, Y., Ohsuye, K., & Kangawa, K. (2012). Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. Regulatory Peptides, 178(1–3), 21–28. https://doi.org/10.1016/j.regpep.2012.06.003
Bresciani, E., Rapetti, D., Dona, F., Bulgarelli, I., Tamiazzo, L., Locatelli, V., & Torsello, A. (2006). Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. Journal of Endocrinological Investigation , 29(8), RC16–RC18. https://doi.org/10.1007/BF03344175
Samson, W. K., White, M. M., Price, C., & Ferguson, A. V. (2007). Obestatin acts in brain to inhibit thirst. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292(1), R637-643. https://doi.org/10.1152/ajpregu.00395.2006
Sun, Y., Butte, N. F., Garcia, J. M., & Smith, R. G. (2008). Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology, 149(2), 843–850. https://doi.org/10.1210/en.2007-0271
Pradhan, G., Wu, C. S., Han Lee, J., Kanikarla, P., Guo, S., Yechoor, V. K., Samson, S. L., & Sun, Y. (2017). Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Science and Reports, 7(1), 979. https://doi.org/10.1038/s41598-017-00888-0
Granata, R., Volante, M., Settanni, F., Gauna, C., Ghe, C., Annunziata, M., Deidda, B., Gesmundo, I., Abribat, T., van der Lely, A. J., Muccioli, G., Ghigo, E., & Papotti, M. (2010). Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. Journal of Molecular Endocrinology, 45(1), 9–17. https://doi.org/10.1677/JME-09-0141
Zhang, N., Yuan, C., Li, Z., Li, J., Li, X., Li, C., Li, R., & Wang, S. R. (2011). Meta-analysis of the relationship between obestatin and ghrelin levels and the ghrelin/obestatin ratio with respect to obesity. American Journal of the Medical Sciences, 341(1), 48–55. https://doi.org/10.1097/MAJ.0b013e3181ec41ed
Gurriaran-Rodriguez, U., Santos-Zas, I., Al-Massadi, O., Mosteiro, C. S., Beiroa, D., Nogueiras, R., Crujeiras, A. B., Seoane, L. M., Senaris, J., Garcia-Caballero, T., Gallego, R., Casanueva, F. F., Pazos, Y., & Camina, J. P. (2012). The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. Journal of Biological Chemistry, 287(45), 38379–38389. https://doi.org/10.1074/jbc.M112.374926
Santos-Zas, I., Cid-Diaz, T., Gonzalez-Sanchez, J., Gurriaran-Rodriguez, U., Seoane-Mosteiro, C., Porteiro, B., Nogueiras, R., Casabiell, X., Relova, J. L., Gallego, R., Mouly, V., Pazos, Y., & Camina, J. P. (2017). Obestatin controls skeletal muscle fiber-type determination. Science and Reports, 7(1), 2137. https://doi.org/10.1038/s41598-017-02337-4
Zhang, W., Majumder, A., Wu, X., & Mulholland, M. W. (2009). Regulation of food intake and body weight by recombinant proghrelin. American Journal of Physiology. Endocrinology and Metabolism, 297(6), E1269-1275. https://doi.org/10.1152/ajpendo.00337.2009
Sjogren, M., Duarte, A. I., McCourt, A. C., Shcherbina, L., Wierup, N., & Bjorkqvist, M. (2017). Ghrelin rescues skeletal muscle catabolic profile in the R6/2 mouse model of Huntington’s disease. Science and Reports, 7(1), 13896. https://doi.org/10.1038/s41598-017-13713-5
Cid-Diaz, T., Leal-Lopez, S., Fernandez-Barreiro, F., Gonzalez-Sanchez, J., Santos-Zas, I., Andrade-Bulos, L. J., Rodriguez-Fuentes, M. E., Mosteiro, C. S., Mouly, V., Casabiell, X., Relova, J. L., Pazos, Y., & Camina, J. P. (2021). Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. Journal of Cachexia, Sarcopenia and Muscle, 12(2), 493–505. https://doi.org/10.1002/jcsm.12677
Villarreal, D., Pradhan, G., Zhou, Y., Xue, B., & Sun, Y. (2022). Diverse and complementary effects of ghrelin and obestatin. Biomolecules. https://doi.org/10.3390/biom12040517
Gurriaran-Rodriguez, U., Santos-Zas, I., Gonzalez-Sanchez, J., Beiroa, D., Moresi, V., Mosteiro, C. S., Lin, W., Vinuela, J. E., Senaris, J., Garcia-Caballero, T., Casanueva, F. F., Nogueiras, R., Gallego, R., Renaud, J. M., Adamo, S., Pazos, Y., & Camina, J. P. (2015). Action of obestatin in skeletal muscle repair: Stem cell expansion, muscle growth, and microenvironment remodeling. Molecular Therapy, 23(6), 1003–1021. https://doi.org/10.1038/mt.2015.40
Poher, A. L., Tschop, M. H., & Muller, T. D. (2018). Ghrelin regulation of glucose metabolism. Peptides, 100, 236–242. https://doi.org/10.1016/j.peptides.2017.12.015
Theander-Carrillo, C., Wiedmer, P., Cettour-Rose, P., Nogueiras, R., Perez-Tilve, D., Pfluger, P., Castaneda, T. R., Muzzin, P., Schurmann, A., Szanto, I., Tschop, M. H., & Rohner-Jeanrenaud, F. (2006). Ghrelin action in the brain controls adipocyte metabolism. The Journal of Clinical Investigation, 116(7), 1983–1993. https://doi.org/10.1172/JCI25811
Pruszynska-Oszmalek, E., Szczepankiewicz, D., Hertig, I., Skrzypski, M., Sassek, M., Kaczmarek, P., Kolodziejski, P. A., Mackowiak, P., Nowak, K. W., Strowski, M. Z., & Wojciechowicz, T. (2013). Obestatin inhibits lipogenesis and glucose uptake in isolated primary rat adipocytes. Journal of Biological Regulators and Homeostatic Agents, 27(1), 23–33.
Mano-Otagiri, A., Iwasaki-Sekino, A., Nemoto, T., Ohata, H., Shuto, Y., Nakabayashi, H., Sugihara, H., Oikawa, S., & Shibasaki, T. (2010). Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regulatory Peptides, 160(1–3), 81–90. https://doi.org/10.1016/j.regpep.2009.11.010
Lin, L., Lee, J. H., Bongmba, O. Y., Ma, X., Zhu, X., Sheikh-Hamad, D., & Sun, Y. (2014). The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging (Albany NY), 6(12), 1019–1032. https://doi.org/10.18632/aging.100706
Szentirmai, E., Kapas, L., Sun, Y., Smith, R. G., & Krueger, J. M. (2009). The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice. Proceedings of the National Academy of Sciences, 106(33), 14069–14074. https://doi.org/10.1073/pnas.0903090106
Szentirmai, E., Hajdu, I., Obal, F., Jr., & Krueger, J. M. (2006). Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats. Brain Research, 1088(1), 131–140. https://doi.org/10.1016/j.brainres.2006.02.072
Jhala, U. S., Canettieri, G., Screaton, R. A., Kulkarni, R. N., Krajewski, S., Reed, J., Walker, J., Lin, X., White, M., & Montminy, M. (2003). cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes & Development, 17(13), 1575–1580. https://doi.org/10.1101/gad.1097103
Ohta, K., Laborde, N. J., Kajiya, M., Shin, J., Zhu, T., Thondukolam, A. K., Min, C., Kamata, N., Karimbux, N. Y., Stashenko, P., & Kawai, T. (2011). Expression and possible immune-regulatory function of ghrelin in oral epithelium. Journal of Dental Research, 90(11), 1286–1292. https://doi.org/10.1177/0022034511420431
Cieszkowski, J., Warzecha, Z., Ceranowicz, P., Ceranowicz, D., Kusnierz-Cabala, B., Pedziwiatr, M., Dembinski, M., Ambrozy, T., Kaczmarzyk, T., Pihut, M., Wieckiewicz, M., Olszanecki, R., & Dembinski, A. (2017). Therapeutic effect of exogenous ghrelin in the healing of gingival ulcers is mediated by the release of endogenous growth hormone and insulin-like growth factor-1. Journal Physiol Pharmacol, 68(4), 609–617.
McKee, K. K., Tan, C. P., Palyha, O. C., Liu, J., Feighner, S. D., Hreniuk, D. L., Smith, R. G., Howard, A. D., & Van der Ploeg, L. H. (1997). Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics, 46(3), 426–434. https://doi.org/10.1006/geno.1997.5069
Hershfinkel, M., Moran, A., Grossman, N., & Sekler, I. (2001). A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A, 98(20), 11749–11754. https://doi.org/10.1073/pnas.201193398
Wang, M., Song, W., Jin, C., Huang, K., Yu, Q., Qi, J., Zhang, Q., & He, Y. (2021). Pax3 and Pax7 Exhibit distinct and overlapping functions in marking muscle satellite cells and muscle repair in a marine teleost sebastes schlegelii. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22073769
Wang, Y., Guo, S., Zhuang, Y., Yun, Y., Xu, P., He, X., Guo, J., Yin, W., Xu, H. E., Xie, X., & Jiang, Y. (2021). Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nature Communications, 12(1), 5064. https://doi.org/10.1038/s41467-021-25364-2
Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A., & Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Journal of Cell Biology, 172(1), 91–102. https://doi.org/10.1083/jcb.200508044
Yang, Q., Li, Y., Zhang, X., & Chen, D. (2018). Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1864(2), 407–419. https://doi.org/10.1016/j.bbadis.2017.10.026
Borok, M., Didier, N., Gattazzo, F., Ozturk, T., Corneau, A., Rouard, H., & Relaix, F. (2021). Progressive and coordinated mobilization of the skeletal muscle niche throughout tissue repair revealed by single-cell proteomic analysis. Cells. https://doi.org/10.3390/cells10040744
Hirata, Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi, Y., Imamura, M., Takeda, S., Hosooka, T., & Ogawa, W. (2019). Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight. https://doi.org/10.1172/jci.insight.124952
Fang, W. Y., Tseng, Y. T., Lee, T. Y., Fu, Y. C., Chang, W. H., Lo, W. W., Lin, C. L., & Lo, Y. C. (2021). Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-kappaB/TNF-alpha and regulating protein synthesis/degradation pathway. British Journal of Pharmacology, 178(15), 2998–3016. https://doi.org/10.1111/bph.15472
Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3), 279–296. https://doi.org/10.4161/auto.7.3.14487
Weidberg, H., Shvets, E., & Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annual Review of Biochemistry, 80, 125–156. https://doi.org/10.1146/annurev-biochem-052709-094552
Cid-Diaz, T., Santos-Zas, I., Gonzalez-Sanchez, J., Gurriaran-Rodriguez, U., Mosteiro, C. S., Casabiell, X., Garcia-Caballero, T., Mouly, V., Pazos, Y., & Camina, J. P. (2017). Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. Journal of Cachexia, Sarcopenia and Muscle, 8(6), 974–990. https://doi.org/10.1002/jcsm.12222
Hassouna, R., Labarthe, A., Zizzari, P., Videau, C., Culler, M., Epelbaum, J., & Tolle, V. (2013). Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity. Front Endocrinol (Lausanne), 4, 25. https://doi.org/10.3389/fendo.2013.00025
Mosa, R. M., Zhang, Z., Shao, R., Deng, C., Chen, J., & Chen, C. (2015). Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine, 49(2), 307–323. https://doi.org/10.1007/s12020-015-0531-z
Pandya, N., DeMott-Friberg, R., Bowers, C. Y., Barkan, A. L., & Jaffe, C. A. (1998). Growth hormone (GH)-releasing peptide-6 requires endogenous hypothalamic GH-releasing hormone for maximal GH stimulation. Journal of Clinical Endocrinology and Metabolism, 83(4), 1186–1189. https://doi.org/10.1210/jcem.83.4.4711
Camilleri, M., & Acosta, A. (2015). Emerging treatments in Neurogastroenterology: Relamorelin: A novel gastrocolokinetic synthetic ghrelin agonist. Neurogastroenterology and Motility, 27(3), 324–332. https://doi.org/10.1111/nmo.12490
Liu, H., Sun, D., Myasnikov, A., Damian, M., Baneres, J. L., Sun, J., & Zhang, C. (2021). Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nature Communications, 12(1), 6410. https://doi.org/10.1038/s41467-021-26735-5
Zhang, H., & Garcia, J. M. (2015). Anamorelin hydrochloride for the treatment of cancer-anorexia-cachexia in NSCLC. Expert Opinion on Pharmacotherapy, 16(8), 1245–1253. https://doi.org/10.1517/14656566.2015.1041500
Adunsky, A., Chandler, J., Heyden, N., Lutkiewicz, J., Scott, B. B., Berd, Y., Liu, N., & Papanicolaou, D. A. (2011). MK-0677 (ibutamoren mesylate) for the treatment of patients recovering from hip fracture: A multicenter, randomized, placebo-controlled phase IIb study. Archives of Gerontology and Geriatrics, 53(2), 183–189. https://doi.org/10.1016/j.archger.2010.10.004
Acknowledgements
The authors would also like to thank Yenepoya Research Centre, Yenepoya, deemed to be University, for providing the online library resources for writing this review article.
Funding
This research was funded by the Department of Biotechnology (BT/PR39858/MED/30/2247/2020) Government of India and awarded to the corresponding author.
Author information
Authors and Affiliations
Contributions
AM and SM contributed to writing the paper. AM conceived the artwork. BB and SSP contributed to correcting the text and finalising the manuscript. All authors read and approved the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare. The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mitra, A., Mandal, S., Bose, B. et al. Unlocking the Potential of Obestatin: A Novel Peptide Intervention for Skeletal Muscle Regeneration and Prevention of Atrophy. Mol Biotechnol 66, 948–959 (2024). https://doi.org/10.1007/s12033-023-01011-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-023-01011-7