Skip to main content

Advertisement

Log in

Application of Computational Techniques in Antibody Fc-Fused Molecule Design for Therapeutics

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huber, R., Deisenhofer, J., Colman, P. M., Matsushima, M., & Palm, W. (1976). Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature, 264, 415–420.

    Article  CAS  PubMed  Google Scholar 

  2. Nisonoff, A., Wissler, F. C., Lipman, L. N., & Woernley, D. L. (1960). Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Archives of Biochemistry and Biophysics, 89, 230–244.

    Article  CAS  PubMed  Google Scholar 

  3. Padlan, E. A., Davies, D. R., Rudikoff, S., & Potter, M. (1976). Structural basis for the specificity of phosphorylcholine-binding immunoglobulins. Immunochemistry, 13, 945–949.

    Article  CAS  PubMed  Google Scholar 

  4. Saxena, A., & Wu, D. (2016). Advances in therapeutic Fc engineering—Modulation of IgG-associated effector functions and serum half-life. Frontiers in Immunology, 7, 580.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park, H. I., Yoon, H. W., & Jung, S. T. (2016). The highly evolvable antibody Fc domain. Trends in Biotechnology, 34, 895–908.

    Article  CAS  PubMed  Google Scholar 

  6. Dong, J., Huang, B., Jia, Z., Wang, B., Gallolu Kankanamalage, S., Titong, A., & Liu, Y. (2020). Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity. Emerging Microbes & Infections, 9, 1034–1036.

    Article  CAS  Google Scholar 

  7. Dong, J., Huang, B., Wang, B., Titong, A., Gallolu Kankanamalage, S., Jia, Z., Wright, M., Parthasarathy, P., & Liu, Y. (2020). Development of humanized tri-specific nanobodies with potent neutralization for SARS-CoV-2. Science and Reports, 10, 17806.

    Article  CAS  Google Scholar 

  8. Doosti, M., Nassiri, M., Nasiri, K., Tahmoorespur, M., & Zibaee, S. (2019). Immunogenic evaluation of FMD virus immuno-dominant epitopes coupled with IL-2/FcIgG in BALB/c mice. Microbial Pathogenesis, 132, 30–37.

    Article  CAS  PubMed  Google Scholar 

  9. Su, C.T.-T., Lua, W.-H., Ling, W.-L., & Gan, S.K.-E. (2018). Allosteric effects between the antibody constant and variable regions: A study of IgA Fc mutations on antigen binding. Antibodies, 7, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., Hayes, R. J., & Dahiyat, B. I. (2006). Engineered antibody Fc variants with enhanced effector function. Proceedings of the National Academy of Sciences of the United States of America, 103, 4005–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jebamani, P., Sriramulu, D. K., & Lee, S.-G. (2023). Residue interaction network and molecular dynamics simulation study on the binding of S239D/I332E Fc variant with enhanced affinity to FcγRIIIa receptor. Journal of Molecular Graphics and Modelling, 118, 1–9.

    Article  Google Scholar 

  12. Schmied, B. J., Lutz, M. S., Riegg, F., Zekri, L., Heitmann, J. S., Bühring, H.-J., Jung, G., & Salih, H. R. (2019). Induction of NK cell reactivity against B-cell acute lymphoblastic leukemia by an Fc-optimized FLT3 antibody. Cancers, 11, 1–15.

    Google Scholar 

  13. Schmied, B. J., Riegg, F., Zekri, L., Grosse-Hovest, L., Bühring, H.-J., Jung, G., & Salih, H. R. (2019). An Fc-optimized CD133 antibody for induction of natural killer cell reactivity against colorectal cancer. Cancers, 11, 1–13.

    Google Scholar 

  14. Edwards, J. M., Heydarchi, B., Khoury, G., Salazar-Quiroz, N. A., Gonelli, C. A., Wines, B., Hogarth, P. M., Kristensen, A. B., Parsons, M. S., & Purcell, D. F. J. (2021). Enhancement of antibody-dependent cellular cytotoxicity and phagocytosis in anti-HIV-1 human-bovine chimeric broadly neutralizing antibodies. Journal of Virology, 95, e0021921.

    Article  PubMed  Google Scholar 

  15. Babaki, M. K. Z., Taghiabadi, M., Soleimanpour, S., Moghadam, M. S., Mosavat, A., Amini, A. A., Mohammadi, M. A., & Rezaee, S. A. (2018). Mycobacterium tuberculosis Ag85b:Hfcγ1 recombinant fusion protein as a selective receptor-dependent delivery system for antigen presentation. Microbial Pathogenesis, 129, 68–73.

    Article  Google Scholar 

  16. Deisenhofer, J. (1981). Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry, 20, 2361–2370.

    Article  Google Scholar 

  17. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2, 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  19. Divine, R., Dang, H. V., Ueda, G., Fallas, J. A., Vulovic, I., Sheffler, W., Saini, S., Zhao, Y. T., & Raj, I. X. (2021). Designed protein assemble antibodies into modular nanocages. Science, 372, 1–17.

    Article  Google Scholar 

  20. Malito, E., Surdo, P. L., Veggi, D., Santini, L., Stefek, H., Brunelli, B., Luzzi, E., Bottomley, M. J., Beernink, P. T., & Scarselli, M. (2016). Neisseria meningitidis factor H binding protein bound to monoclonal antibody JAR5: Implications for antibody synergy. The Biochemical Journal, 473, 4699–4713.

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2, 195–197.

    Article  CAS  PubMed  Google Scholar 

  22. Gallagher, D. T., Galvin, C. V., & Karageorgos, I. (2018). Structure of the Fc fragment of the NIST reference antibody RM8671. Acta Crystallographica Section F: Structural Biology Communications, 74, 524–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. DeLano, W. L. (2003). The PyMOL molecular graphics system. DeLano Scientic LLC.

    Google Scholar 

  24. Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774–797.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, K., Day, T., Warshaviak, D., Murrett, C., Friesner, R., & Pearlman, D. (2014). Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins, 82, 1646–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belviso, B. D., Mangiatordi, G. F., Alberga, D., Mangini, V., Carrozzini, B., & Caliandro, R. (2022). Structural characterization of the full-length anti-CD20 antibody rituximab. Frontiers in Molecular Biosciences, 9, 1–18.

    Article  Google Scholar 

  27. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., & Ronneberger, O. (2021). Highly accurate protein structure prediction with alphafold. Nature, 596, 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935.

    Article  CAS  Google Scholar 

  29. Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Henin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153, 044130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., & Feig, M. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8, 3257–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ingrama, J. R., Blombergb, O. S., Rashidianb, M., Alia, L., Garforthc, S., Fedorovc, E., Fedorovc, A. A., Bonannoc, J. B., Le Gallb, C., Crowleya, S., Espinosaa, C., Kelihere, E. J., Weissledere, R., Almo, S. C., Dougan, S. K., Ploegh, H. L., & Dougan, M. (2018). Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proceedings of the National Academy of Sciences of the United States of America, 115, 3912–3917.

    Article  Google Scholar 

  32. Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., & Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1, 793–801.

    Article  CAS  PubMed  Google Scholar 

  33. Stamper, C. C., Zhang, Y., Tobin, J. F., Erbe, D. V., Ikemizu, S., Davis, S. J., Stahl, M. L., Seehra, J., Somers, W. S., & Mosyak, L. (2001). Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 410, 608–611.

    Article  CAS  PubMed  Google Scholar 

  34. Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3, 611–618.

    Article  CAS  PubMed  Google Scholar 

  35. Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66, 486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., & Headd, J. J. (2010). PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography, 66, 213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, L., She, H., Gong, Y., Pang, X., Yi, M., Guo, L., Li, J., Arroyo, S., Lu, X., Ovchinnikov, S., Cheng, G., Liu, X., Jiang, X., Feng, S., & Deng, H. (2019). Development of a dual-functional conjugate of antigenic peptide and Fc-III mimetics (DCAF) for targeted antibody blocking. Chemical Science, 10, 3271–3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cavaco, M., Castanho, M., & Neves, V. (2017). Peptibodies: An elegant solution for a long-standing problem. Biopolymers, 110, e23095.

    Article  Google Scholar 

  39. Shimamoto, G., Gegg, C., Boone, T., & Queva, C. (2012). Peptibodies: A flexible alternative format to antibodies. MAbs, 4, 586–591.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao, Y., Hao, X., Feng, J., Shen, B., Wei, J., & Sun, J. (2015). The comparison of BLyS-binding peptides from phage display library and computer-aided design on BLyS-TACI interaction. International Immunopharmacology, 24, 219–223.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, W., Sun, X., Zhu, L., Gan, Y., Baiwu, R., Wei, J., Li, Z., Li, R., & Sun, J. (2016). A novel BLyS peptibody down-regulates B cell and T helper cell subsets in vivo and ameliorates collagen-induced arthritis. Inflammation, 39, 839–848.

    Article  CAS  PubMed  Google Scholar 

  42. Lim, Y. Y., Lim, T. S., & Choong, Y. S. (2020). Human IgG1 Fc pH-dependent optimization from a constant pH molecular dynamics simulation analysis. RSC Advances, 10, 13066–13075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dall’Acqua, W. F., Kiener, P. A., & Wu, H. (2006). Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). Journal of Biological Chemistry, 281, 23514–23524.

    Article  CAS  PubMed  Google Scholar 

  44. Mackness, B. C., Jaworski, J. A., Boudanova, E., Park, A., Valente, D., Mauriac, C., Pasquier, O., Schmidt, T., Kabiri, M., Kandira, A., Radošević, K., & Qiu, H. (2019). Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. MAbs, 11, 1276–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y., He, B., Liu, K., Ning, L., Luo, D., Xu, K., Zhu, W., Wu, Z., Huang, J., & Xu, X. (2017). A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduction and Targeted Therapy, 2, 17010.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ning, L., Li, Z., Bai, Z., Hou, S., He, B., Huang, J., & Zhou, P. (2018). Computational design of antiangiogenic peptibody by fusing human IgG1 Fc fragment and HRH peptide: Structural modeling, energetic analysis, and dynamics simulation of its binding potency to VEGF receptor. International Journal of Biological Sciences, 14, 930–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trabuco, L. G., Lise, S., Petsalaki, E., & Russell, R. B. (2012). PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Research, 40, W423–W427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maupetit, J., Derreumaux, P., & Tuffery, P. (2009). PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids Research, 37, W498–W503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52, 80–87.

    Article  CAS  PubMed  Google Scholar 

  50. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins. Journal of Computational Chemistry, 24, 1999–2012.

    Article  CAS  PubMed  Google Scholar 

  51. Cottignies-Calamarte, A., Tudor, D., & Morgane, B. (2023). Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Frontiers in Immunology, 14, 1–16.

    Article  Google Scholar 

  52. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  53. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lassmann, T. (2019). Kalign 3: Multiple sequence alignment of large data sets. Bioinformatics, 36, 1928–1929.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A., Jahesh, G., Khan, H., Coombe, L., Warren, R. L., & Birol, I. (2017). ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Research, 27, 768–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Steinegger, M., Mirdita, M., & Soding, J. (2019). Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nature Methods, 16, 603–606.

    Article  CAS  PubMed  Google Scholar 

  57. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70, e102.

    Article  CAS  PubMed  Google Scholar 

  58. Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30, 70–82.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, B. D., Timony, M. A., & Ruiz, P. (2019). DNAvisualization.org: A serverless web tool for DNA sequence visualization. Nucleic Acids Research, 47, W20–W25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S., & Gascuel, O. (2019). NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Research, 47, W260–W265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45, W24–W29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43, D405–D412.

    Article  CAS  PubMed  Google Scholar 

  64. Claude, J. B., Suhre, K., Notredame, C., Claverie, J. M., & Abergel, C. (2004). CaspR: A web server for automated molecular replacement using homology modelling. Nucleic Acids Research, 32, W606–W609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, Y., Virtanen, J., Xue, Z., & Zhang, Y. (2017). I-TASSER-MR: Automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Research, 45, W429–W434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Virtanen, J. J., & Zhang, Y. (2018). MR-REX: Molecular replacement by cooperative conformational search and occupancy optimization on low-accuracy protein models. Acta Crystallographica Section D: Structural Biology, 74, 606–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Croll, T. I. (2018). ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallographica Section D: Structural Biology, 74, 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Turk, D. (2013). MAIN software for density averaging, model building, structure refinement and validation. Acta Crystallographica Section D: Biological Crystallography, 69, 1342–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Terwilliger, T. C., Dimaio, F., Read, R. J., Baker, D., Bunkoczi, G., Adams, P. D., Grosse-Kunstleve, R. W., Afonine, P. V., & Echols, N. (2012). phenix.mr_rosetta: Molecular replacement and model rebuilding with Phenix and Rosetta. Journal of Structural and Functional Genomics, 13, 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., & Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 67, 355–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, 64, 112–122.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, V. B., Arendall, W. B., 3rd., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66, 12–21.

    Article  CAS  PubMed  Google Scholar 

  73. Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Natural Structural Biology, 10, 980.

    Article  CAS  Google Scholar 

  74. Jin, S., Contessoto, V. G., Chen, M., Schafer, N. P., Lu, W., Chen, X., Bueno, C., Hajitaheri, A., Sirovetz, B. J., Davtyan, A., Papoian, G. A., Tsai, M. Y., & Wolynes, P. G. (2020). AWSEM-Suite: A protein structure prediction server based on template-guided, coevolutionary-enhanced optimized folding landscapes. Nucleic Acids Research, 48, W25–W30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815.

    Article  CAS  PubMed  Google Scholar 

  76. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greener, J. G., Kandathil, S. M., & Jones, D. T. (2019). Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nature Communications, 10, 3977.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xu, D., & Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 80, 1715–1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–W531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., & Kmiecik, S. (2015). CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 43, W419–W424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein–protein docking. Structure, 28, 1071–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

    Article  CAS  PubMed  Google Scholar 

  84. Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E. I., Cruzeiro, V. M. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Jin, C., Kasavajhala, K., … Kollman, P. A. (2021). Amber20. University of California.

    Google Scholar 

  86. Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.

    Article  CAS  Google Scholar 

  87. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brown, D. K., Penkler, D. L., Sheik Amamuddy, O., Ross, C., Atilgan, A. R., Atilgan, C., & Tastan Bishop, O. (2017). MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics, 33, 2768–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Laaksonen, L. (1992). A graphics program for the analysis and display of molecular dynamics trajectories. Journal of Molecular Graphics, 10, 33–43.

    Article  CAS  PubMed  Google Scholar 

  90. Carrillo-Tripp, M., Alvarez-Rivera, L., Lara-Ramírez, O. I., Becerra-Toledo, F. J., Vega-Ramírez, A., Quijas-Valades, E., González-Zavala, E., González-Vázquez, J. C., García-Vieyra, J., Santoyo-Rivera, N. B., Chapa-Vergara, S. V., & Meneses-Viveros, A. (2018). HTMoL: Full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory data. Journal of Computer-Aided Molecular Design, 32, 869–876.

    Article  CAS  PubMed  Google Scholar 

  91. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  PubMed  Google Scholar 

  92. Hunter, S. A., Mclntosh, B. J., Shi, Y., Sperberg, R. A. P., Funatogawa, C., Labanieh, L., Soon, E., Wastyk, H. C., Mehta, N., Carter, C., Hunter, T., & Cochran, J. R. (2021). An engineered ligand trap inhibits leukemi inhibitory factor as pancreatic cancer treatment strategy. Communications Biology, 4, 1–13.

    Article  Google Scholar 

Download references

Funding

This work is supported by FRGS (203/CIPPM/6711680; FRGS/1/2018/STG05/USM/02/1) from the Malaysia Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

CLN drafted the manuscript. TSL and YSC designed and edit the manuscript.

Corresponding author

Correspondence to Yee Siew Choong.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.L., Lim, T.S. & Choong, Y.S. Application of Computational Techniques in Antibody Fc-Fused Molecule Design for Therapeutics. Mol Biotechnol 66, 568–581 (2024). https://doi.org/10.1007/s12033-023-00885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00885-x

Keywords

Navigation