Skip to main content

Advertisement

Log in

Bibliometric Analysis of Global Research on Circular RNA: Current Status and Future Directions

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have gained significant attention in recent years. This bibliometric analysis aimed to provide insights into the current state and future trends of global circRNA research. The scientific output on circRNAs from 2010 to 2022 was retrieved from the Web of Science Core Collection with circRNA-related terms as the subjects. Key bibliometric indicators were calculated and evaluated using CiteSpace. A total of 7385 studies on circRNAs were identified. The output and citation number have increased rapidly after 2015. China, the USA, and Germany were top three publishing countries. Currently, circCDR1as, circHIPK3, circPVT1, circSHPRH, and circZNF609 are the most studied circRNAs; and all are related to cancer. The theme of research have shifted from transcript, exon circularization and miRNA sponge topics to the transcriptome, tumor suppressor, and biomarkers, indicating that research interests have evolved from basic to applied research. CircRNAs will continue to be a highly active research area in the near future. From the current understanding of circRNA characterization and regulatory mechanisms as miRNA sponges in cancer, future directions may examine potential diagnostic and therapeutic roles of circRNAs in cancers or the function and mechanism of circRNAs in other diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data transparency is guaranteed. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sun, J., Chen, G., Jing, Y., He, X., Dong, J., Zheng, J., Zou, M., Li, H., Wang, S., Sun, Y., et al. (2018). LncRNA expression profile of human thoracic aortic dissection by high-throughput sequencing. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 46(3), 1027–1041.

    Article  CAS  PubMed  Google Scholar 

  2. Seashols-Williams, S., Lewis, C., Calloway, C., Peace, N., Harrison, A., Hayes-Nash, C., Fleming, S., Wu, Q., & Zehner, Z. E. (2016). High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis, 37(21), 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  3. Low, S. S., Ji, D., Chai, W. S., Liu, J., Khoo, K. S., Salmanpour, S., Karimi, F., Deepanraj, B., & Show, P. L. (2021). Recent progress in nanomaterials modified electrochemical biosensors for the detection of MicroRNA. Micromachines, 12(11), 1409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wan, Z. F., Umer, M., Lobino, M., Thiel, D., Nguyen, N. T., Trinchi, A., Shiddiky, M. J. A., Gao, Y. S., & Li, Q. (2020). Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon, 163, 385–394.

    Article  CAS  Google Scholar 

  5. Perumal, V., Saheed, M. S. M., Mohamed, N. M., Murthe, S. S., Gopinath, S. C. B., & Chiu, J. M. (2018). Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosensors & Bioelectronics, 116, 116–122.

    Article  CAS  Google Scholar 

  6. Abu, N., & Jamal, R. (2016). Circular RNAs as promising biomarkers: A mini-review. Frontiers in Physiology, 7, 355.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, P., Sheng, M., Du, C., Chao, Z., Xu, H., Cheng, X., Li, C., & Xu, Y. (2021). Assessment of CircRNA expression profiles and potential functions in brown adipogenesis. Frontiers in Genetics, 12, 769690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glazar, P., Papavasileiou, P., & Rajewsky, N. (2014). circBase: A database for circular RNAs. RNA, 20(11), 1666–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosal, S., Das, S., Sen, R., Basak, P., & Chakrabarti, J. (2013). Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Frontiers in Genetics, 4, 283.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. C., Li, J. R., Sun, C. H., Andrews, E., Chao, R. F., Lin, F. M., Weng, S. L., Hsu, S. D., Huang, C. C., Cheng, C., et al. (2016). CircNet: A database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Research, 44(D1), D209-215.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X., Han, P., Zhou, T., Guo, X., Song, X., & Li, Y. (2016). circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Scientific Reports, 6, 34985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong, R., Ma, X. K., Li, G. W., & Yang, L. (2018). CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics, Proteomics & Bioinformatics, 16(4), 226–233.

    Article  Google Scholar 

  15. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, K., Chen, X., Xu, M., Liu, X., Hu, X., Xu, T., Sun, H., Pan, Y., He, B., & Wang, S. (2018). CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death & Disease, 9(4), 417.

    Article  Google Scholar 

  17. Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55–66.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., Shi, G., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 7, 11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sinha, T., Panigrahi, C., Das, D., & Chandra Panda, A. (2022). Circular RNA translation, a path to hidden proteome. Wiley Interdisciplinary Reviews RNA, 13(1), e1685.

    Article  CAS  PubMed  Google Scholar 

  20. Altesha, M. A., Ni, T., Khan, A., Liu, K., & Zheng, X. (2019). Circular RNA in cardiovascular disease. Journal of Cellular Physiology, 234(5), 5588–5600.

    Article  CAS  PubMed  Google Scholar 

  21. Sakshi, S., Jayasuriya, R., Ganesan, K., Xu, B., & Ramkumar, K. M. (2021). Role of circRNA-miRNA-mRNA interaction network in diabetes and its associated complications. Molecular Therapy Nucleic Acids, 26, 1291–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kristensen, L. S., Jakobsen, T., Hager, H., & Kjems, J. (2022). The emerging roles of circRNAs in cancer and oncology. Nature Reviews Clinical Oncology, 19(3), 188–206.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, H., Cheng, K., Tong, L., Wang, Y., Yang, W., & Sun, Z. (2022). Knowledge structure and emerging trends on osteonecrosis of the femoral head: A bibliometric and visualized study. Journal of Orthopaedic Surgery and Research, 17(1), 194.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo, L., Cheng, J., & Zhang, Z. (2022). Mapping the knowledge domain of financial decision making: A scientometric and bibliometric study. Frontiers in Psychology, 13, 1006412.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Venable, G. T., Shepherd, B. A., Loftis, C. M., McClatchy, S. G., Roberts, M. L., Fillinger, M. E., Tansey, J. B., & Klimo, P., Jr. (2016). Bradford’s law: Identification of the core journals for neurosurgery and its subspecialties. Journal of Neurosurgery, 124(2), 569–579.

    Article  PubMed  Google Scholar 

  26. Yang, J. J. D. Y., Cai, Y. Z., Chen, X. Y., & Li, D. X. (2022). Visual analysis on regulation of necroptosis with Chinese medicine based on VOSviewer and CiteSpace knowledge graphs. Zhongguo Zhong Yao Za Zhi, 47(14), 3933–3942.

    PubMed  Google Scholar 

  27. Gao, B., Wu, J., Lv, K., Shen, C., & Yao, H. (2022). Visualized analysis of hotspots and frontiers in diabetes-associated periodontal disease research: A bibliometric study. Annals of Translational Medicine, 10(24), 1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alimi, M., Taslimi, S., Ghodsi, S. M., & Rahimi-Movaghar, V. (2013). Quality and quantity of research publications by Iranian neurosurgeons: Signs of scientific progress over the past decades. Surgical Neurology International, 4, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, C., Kang, Y., Kong, F., Yang, Q., & Chang, D. (2022). Hotspots and development frontiers of circRNA based on bibliometric analysis. Non-Coding RNA Research, 7(2), 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.

    Article  CAS  PubMed  Google Scholar 

  31. Maula, A. W., Fuad, A., & Utarini, A. (2018). Ten-years trend of dengue research in Indonesia and South-east Asian countries: A bibliometric analysis. Global Health Action, 11(1), 1504398.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, L., Wang, C., Sun, H., Wang, J., Liang, Y., Wang, Y., & Wong, G. (2021). The bioinformatics toolbox for circRNA discovery and analysis. Briefings in Bioinformatics, 22(2), 1706–1728.

    Article  CAS  PubMed  Google Scholar 

  33. Obi, P., & Chen, Y. G. (2021). The design and synthesis of circular RNAs. Methods, 196, 85–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Hou, Z., Wang, Y., Ma, H., Sun, P., Ma, Z., Wong, K. C., & Li, X. (2022). HCRNet: High-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network. Briefings in Bioinformatics, 23(2), 1.

    Article  Google Scholar 

  35. Dudekula, D. B., Panda, A. C., Grammatikakis, I., De, S., Abdelmohsen, K., & Gorospe, M. (2016). CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biology, 13(1), 34–42.

    Article  PubMed  Google Scholar 

  36. Chen, L. L. (2020). The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature Reviews Molecular Cell Biology, 21(8), 475–490.

    Article  CAS  PubMed  Google Scholar 

  37. Misir, S., Wu, N., & Yang, B. B. (2022). Specific expression and functions of circular RNAs. Cell Death and Differentiation, 29(3), 481–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., & Lawrie, C. H. (2019). CircRNAs and cancer: Biomarkers and master regulators. Seminars in Cancer Biology, 58, 90–99.

    Article  CAS  PubMed  Google Scholar 

  39. Sole, C., Mentxaka, G., & Lawrie, C. H. (2021). The use of circRNAs as biomarkers of cancer. Methods in Molecular Biology, 2348, 307–341.

    Article  CAS  PubMed  Google Scholar 

  40. Ma, Y., Liu, Y., & Jiang, Z. (2020). CircRNAs: A new perspective of biomarkers in the nervous system. Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie, 128, 110251.

    Article  CAS  Google Scholar 

  41. Chavalarias, D., & Cointet, J. P. (2013). Phylomemetic patterns in science evolution–the rise and fall of scientific fields. PLoS ONE, 8(2), e54847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, F., Holleman, J., & Otis, B. P. (2012). Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Transactions on Biomedical Circuits and Systems, 6(4), 344–355.

    Article  PubMed  Google Scholar 

  43. LingLing, Z. H. E. N. G. Y. Q. L. Q. (2019). Chinese RNA research leading to the international science and technology frontier. Scientia Sinica Vitae, 49(10), 1323–1335.

    Google Scholar 

  44. Xing, Y. H., Bai, Z., Liu, C. X., Hu, S. B., Ruan, M., & Chen, L. L. (2016). Research progress of long noncoding RNA in China. IUBMB Life, 68(11), 887–893.

    Article  CAS  PubMed  Google Scholar 

  45. Wu, R., Guo, F., Wang, C. H., Qian, B., Shen, F., Huang, F., & Xu, W. (2021). Bibliometric analysis of global circular RNA research trends from 2007 to 2018. Cell Journal, 23(2), 238–246.

    PubMed  PubMed Central  Google Scholar 

  46. Casey, M. C., Kerin, M. J., Brown, J. A., & Sweeney, K. J. (2015). Evolution of a research field-a micro (RNA) example. PeerJ, 3, e829.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhai, X., Zhao, J., Wang, Y., Wei, X., Li, G., Yang, Y., Chen, Z., Bai, Y., Wang, Q., Chen, X., et al. (2018). Bibliometric analysis of global scientific research on lncRNA: A swiftly expanding trend. BioMed Research International, 2018, 7625078.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, S., Li, X., Xue, W., Zhang, L., Yang, L. Z., Cao, S. M., Lei, Y. N., Liu, C. X., Guo, S. K., Shan, L., et al. (2021). Screening for functional circular RNAs using the CRISPR-Cas13 system. Nature Methods, 18(1), 51–59.

    Article  PubMed  Google Scholar 

  49. Zhu, Y. J., Zheng, B., Luo, G. J., Ma, X. K., Lu, X. Y., Lin, X. M., Yang, S., Zhao, Q., Wu, T., Li, Z. X., et al. (2019). Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics, 9(12), 3526–3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fisher, L. (2021). Retraction: CircRNA PVT1 modulates cell metastasis via the miR-181a-5p/NEK7 axis and cisplatin chemoresistance through miR-181a-5p-mediated autophagy in non-small cell lung cancer. RSC Advances, 11(11), 6256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frederickson, R. M., & Herzog, R. W. (2021). Keeping them honest: Fighting fraud in academic publishing. Molecular Therapy: The Journal of the American Society of Gene Therapy, 29(3), 889–890.

    Article  CAS  PubMed  Google Scholar 

  52. Mallapaty, S. (2020). China’s research-misconduct rules target ‘paper mills’ that churn out fake studies. Nature. https://doi.org/10.1038/d41586-020-02445-8

    Article  PubMed  Google Scholar 

  53. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., & Brown, P. O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE, 7(2), e30733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., et al. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Reports, 10(2), 170–177.

    Article  CAS  PubMed  Google Scholar 

  55. Rybak-Wolf, A., Stottmeister, C., Glazar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58(5), 870–885.

    Article  CAS  PubMed  Google Scholar 

  56. Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.

    Article  Google Scholar 

  57. Jeck, W. R., & Sharpless, N. E. (2014). Detecting and characterizing circular RNAs. Nature Biotechnology, 32(5), 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L., & Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.

    Article  CAS  PubMed  Google Scholar 

  59. Yuan, G., Ding, W., Sun, B., Zhu, L., Gao, Y., & Chen, L. (2021). Upregulated circRNA_102231 promotes gastric cancer progression and its clinical significance. Bioengineered, 12(1), 4936–4945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghazimoradi, M. H., & Babashah, S. (2022). The role of CircRNA/miRNA/mRNA axis in breast cancer drug resistance. Frontiers in Oncology, 12, 966083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishola, A. A., Chien, C. S., Yang, Y. P., Chien, Y., Yarmishyn, A. A., Tsai, P. H., Chen, J. C., Hsu, P. K., Luo, Y. H., Chen, Y. M., et al. (2022). Oncogenic circRNA C190 promotes non-small cell lung cancer via modulation of the EGFR/ERK pathway. Cancer Research, 82(1), 75–89.

    Article  CAS  PubMed  Google Scholar 

  62. Li, J., Hu, Z. Q., Yu, S. Y., Mao, L., Zhou, Z. J., Wang, P. C., Gong, Y., Su, S., Zhou, J., Fan, J., et al. (2022). CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma. Cancer Research, 82(6), 1055–1069.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., & Fu, S. (2021). CircRNA: A novel potential strategy to treat thyroid cancer (Review). International Journal of Molecular Medicine, 48(5), 1.

    Article  Google Scholar 

  64. Jacobs, M. B., Gieron, M. A., Martinez, C. R., Campos, A., & Wood, B. P. (1990). Radiological case of the month. Basal ganglia injury after cardiopulmonary arrest: Clinical and magnetic resonance imaging correlation. Archives of Pediatrics & Adolescent Medicine, 144(8), 937–938.

    Article  CAS  Google Scholar 

  65. Ren, S., Liu, J., Feng, Y., Li, Z., He, L., Li, L., Cao, X., Wang, Z., & Zhang, Y. (2019). Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 388.

    Article  PubMed Central  Google Scholar 

  66. Jiao, J., Zhang, T., Jiao, X., Huang, T., Zhao, L., Ma, D., & Cui, B. (2020). hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. Journal of Cellular Physiology, 235(2), 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  67. Yao, X., Mao, Y., Wu, D., Zhu, Y., Lu, J., Huang, Y., Guo, Y., Wang, Z., Zhu, S., Li, X., et al. (2021). Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/beta-catenin axis. Cancer Letters, 512, 38–50.

    Article  CAS  PubMed  Google Scholar 

  68. Kristensen, L. S., Hansen, T. B., Veno, M. T., & Kjems, J. (2018). Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene, 37(5), 555–565.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, J., Yang, J., Fei, X., Wang, X., & Wang, K. (2021). CircRNA ciRS-7: A novel oncogene in multiple cancers. International Journal of Biological Sciences, 17(1), 379–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Du, W. W., Fang, L., Yang, W., Wu, N., Awan, F. M., Yang, Z., & Yang, B. B. (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differentiation, 24(2), 357–370.

    Article  CAS  PubMed  Google Scholar 

  71. Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., Liu, Y., Zhao, P., Xiang, X., Li, L., et al. (2020). Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. Journal of Cellular and Molecular Medicine, 24(1), 799–813.

    Article  CAS  PubMed  Google Scholar 

  72. Xing, Y., Zha, W. J., Li, X. M., Li, H., Gao, F., Ye, T., Du, W. Q., & Liu, Y. C. (2020). Circular RNA circ-Foxo3 inhibits esophageal squamous cell cancer progression via the miR-23a/PTEN axis. Journal of Cellular Biochemistry, 121(3), 2595–2605.

    Article  CAS  PubMed  Google Scholar 

  73. Yang, T., Li, Y., Zhao, F., Zhou, L., & Jia, R. (2021). Circular RNA Foxo3: A promising cancer-associated biomarker. Frontiers in Genetics, 12, 652995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deng, Y. Y., Min, Y. J., Zhou, K., Yang, Q. S., Peng, M., Cui, Z. R., Zhu, X. L., Liu, H., Wang, M., Zhang, X., et al. (2021). Identification of the tumor-suppressive role of circular RNA-FOXO3 in colorectal cancer via regulation of miR-543/LATS1 axis. Oncology Reports, 46(5), 1.

    Article  Google Scholar 

  75. Bi, L., Zhang, C., Yao, Y., & He, Z. (2021). Circ-HIPK3 regulates YAP1 expression by sponging miR-381–3p to promote oral squamous cell carcinoma development. Journal of Biosciences, 46, 1.

    Article  Google Scholar 

  76. You, J., & Wang, X. (2021). Circ_HIPK3 knockdown inhibits cell proliferation, migration and invasion of cholangiocarcinoma partly via mediating the miR-148a-3p/ULK1 pathway. Cancer Management and Research, 13, 3827–3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma, X., Wang, X., Zhang, X., Gong, X., Sun, R., Wong, S. H., Chan, M. T. V., & Wu, W. K. K. (2022). An update on the roles of circular RNAs in spinal cord injury. Molecular Neurobiology, 59(4), 2620–2628.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, H., Dai, Q., Zheng, L., Yuan, X., Pan, S., & Deng, J. (2020). Knockdown of circ_HIPK3 inhibits tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. Biochemical and Biophysical Research Communications, 533(3), 501–509.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development, 21(21), 2747–2761.

    Article  CAS  Google Scholar 

  80. Yilmaz, M., Maass, D., Tiwari, N., Waldmeier, L., Schmidt, P., Lehembre, F., & Christofori, G. (2011). Transcription factor Dlx2 protects from TGFbeta-induced cell-cycle arrest and apoptosis. The EMBO Journal, 30(21), 4489–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2018YFC0807203) and Shanghai Sailing Program (21YF1418800).

Author information

Authors and Affiliations

Authors

Contributions

LYH, TY and ZZX data obtain, software analysis and visualization; LZH and YZF investigation; ZMY editing; LYH and ZJH writing—original draft preparation, review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhao Jiuhong.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This is a bibliometric study. We analyzed publicly available data sets from WOS. The Ethics Committee of Shanghai University of Medicine and Health Science confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 19007 KB)

Supplementary file2 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehui, L., Zhihong, L., Fang, T. et al. Bibliometric Analysis of Global Research on Circular RNA: Current Status and Future Directions. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00830-y

Keywords

Navigation