Skip to main content
Log in

Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant transformation based on Agrobacterium-mediated transformation is a technique that mimics the natural agrobacterium system for gene(s) introduction into crops. Through this technique, various crop species have been improved/modified for different trait/s, showing a successful genetic transformation so far. This technique has many advantages over other transformation methods such as stable integration of transgene, cost effective. However, there are many limitations of this technology such as mostly the crops are recalcitrant to agrobacterium, low transformation efficiency, transgene integration as well as off targets. So, it’s very important to explore the major limitations and possible solutions for Agrobacterium-mediated transformation in order to increase its genetic transformation efficiency. Therefore, the present review article gives a comprehensive study how the transgenic crops are developed using Agrobacterium-mediated transformation, crops that have already been modified through this method, and risks associated with transgenic plants based on Agrobacterium-mediated transformation. Moreover, the challenges and problems associated with Agrobacterium-mediated transformation and how those problems can be solved in future for a successful genetic transformation of crops using modern biotechnology techniques such as CRISPR/Cas9 systems. The present review article will be really helpful for the audience those working on Genome editing of crops using Agrobacterium-mediated transformation and will opens many ways for future plant genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2, 494–501.

    Article  PubMed  Google Scholar 

  2. Low, L.-Y., Yang, S.-K., Andrew Kok, D., Ong-Abdullah, J., Tan, N.-P., & Lai, K.-S. (2018). Transgenic plants: Gene constructs, vector and transformation method. New Visions in Plant Science. https://doi.org/10.5772/intechopen.79369

    Article  Google Scholar 

  3. Datta, A. (2013). Genetic engineering for improving quality and productivity of crops. Agriculture & Food Security, 2, 15.

    Article  Google Scholar 

  4. ISAAA. (2020b). Brief 55–2019: Executive Summary. 2020b

  5. Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715–741.

    Article  CAS  PubMed  Google Scholar 

  6. Kudo, M., Kidokoro, S., Yoshida, T., Mizoi, J., Kojima, M., Takebayashi, Y., Sakakibara, H., Fernie, A. R., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2019). A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. The Plant Journal, 97, 240–256.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., & Zhu, Y. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences, 113, 1949–1954.

    Article  CAS  Google Scholar 

  8. Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. (2005). Genetic transformation: A powerful tool for dissection of adaptive traits in trees. New Phytologist, 167, 9–18.

    Article  CAS  PubMed  Google Scholar 

  9. Choudhary, N., Jangid, A., & Dhatwalia, S. (2017). Direct and Indirect Methods of Gene Transfer, in Plants in Plant Biotechnology (pp. 3–28). Apple Academic Press.

    Google Scholar 

  10. Kluepfel, D., McClean, A., Aradhya, M., & Moersfelder, J. (2014). Identification of Juglans wild relatives resistant to crown gall caused by Agrobacterium tumefaciens. II International Symposium on Wild Relatives of Subtropical and Temperate Fruit and Nut Crops, 1074, 87–94.

    Google Scholar 

  11. Anand, A., & Mysore, K. S. (2007). Agrobacterium biology and crown gall disease, in Plant-associated bacteria (pp. 359–384). Springer.

    Google Scholar 

  12. Cho, S. T., Haryono, M., Chang, H. H., Santos, M. N. M., Lai, E. M., & Kuo, C. H. (2018). Complete genome sequence of Agrobacterium tumefaciens 1D1609. Genome Announcements. https://doi.org/10.1128/genomeA.00253-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amro, J., Black, C., Jemouai, Z., Rooney, N., Daneault, C., Zeytuni, N., Ruiz, M., Bui, K. H., & Baron, C. (2022). Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. bioRxiv. https://doi.org/10.2139/ssrn.4136718

    Article  Google Scholar 

  14. Shreni Agrawal, E. R. (2022). A review: Agrobacterium-mediated gene transformation to increase plant productivity. The Journal of Phytopharmacology., 11, 111.

    Article  Google Scholar 

  15. Ulian, E., Smith, R., Gould, J., & McKnight, T. (1988). Transformation of plants via the shoot apex. In vitro cellular & developmental biology, 24, 951–954.

    Article  Google Scholar 

  16. Horsch, R., Fry, J., Hoffmann, N., Wallroth, M., Eichholtz, D., Rogers, S., & Fraley, R. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  17. Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197–214.

    Article  CAS  PubMed  Google Scholar 

  18. Zapata, C., Park, S., El-Zik, K., & Smith, R. (1999). Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theoretical and Applied Genetics, 98, 252–256.

    Article  Google Scholar 

  19. Matsunaga, E., Nanto, K., Oishi, M., Ebinuma, H., Morishita, Y., Sakurai, N., Suzuki, H., Shibata, D., & Shimada, T. (2012). Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Reports, 31, 225–235.

    Article  CAS  PubMed  Google Scholar 

  20. Lei, J., Li, X., Wang, D., Shao, L., Wei, X., & Huang, L. (2012). Agrobacterium-mediated transformation of cotton shoot apex with SNC1 gene and resistance to cotton Fusarium wilt in T 1 generation. Cotton Genomics and Genetics. https://doi.org/10.5376/cgg.2012.03.0001

    Article  Google Scholar 

  21. Guo, W.-F., Wang, K. Y., Nan, W., Jun, L., Li, G.-Q., & Liu, D.-H. (2018). Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection. Journal of Integrative Agriculture, 17, 2196–2203.

    Article  CAS  Google Scholar 

  22. Niazian, M., Noori, S. S., Galuszka, P., & Mortazavian, S. M. M. (2017). Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Soil and Water Research, 53, 133–143.

    CAS  Google Scholar 

  23. Bhalla, P. L., & Singh, M. B. (2008). Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols, 3, 181–189.

    Article  CAS  PubMed  Google Scholar 

  24. Cardoza, V., & Stewart, C. (2003). Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Reports, 21, 599–604.

    Article  CAS  PubMed  Google Scholar 

  25. Yan, B., Reddy, S., Collins, G., & Dinkins, R. (2000). Agrobacterium tumefaciens–mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Reports, 19, 1090–1097.

    Article  CAS  PubMed  Google Scholar 

  26. Wen, S.-S., Ge, X.-L., Wang, R., Yang, H.-F., Bai, Y.-E., Guo, Y.-H., Zhang, J., Lu, M.-Z., Zhao, S.-T., & Wang, L.-Q. (2022). An Efficient Agrobacterium-Mediated transformation method for hybrid poplar 84K (Populus alba× P. glandulosa) using Calli as explants. International Journal of Molecular Sciences, 23, 2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sulian, L., Xiaoyan, Y., Kewei, Z., & Juren, Z. (2004). Agrobacterium-mediated transformation of shoot apex of cotton and production of transgenic plants carrying betA gene. Gaojishu Tongxun, 14, 20–25.

    Google Scholar 

  28. Masters, A., Kang, M., McCaw, M., Zobrist, J. D., Gordon-Kamm, W., Jones, T., & Wang, K. (2020). Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. JoVE (Journal of Visualized Experiments), 156, e60782.

    Google Scholar 

  29. Masters, A., Kang, M., McCaw, M., Zobrist, J. D., Gordon-Kamm, W., Jones, T., & Wang, K. (2020). Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. Journal of Visualized Experiments. https://doi.org/10.3791/60782-v

    Article  PubMed  Google Scholar 

  30. Hu, D., Bent, A. F., Hou, X., & Li, Y. (2019). Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 19, 246.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith, R. H. (2012). Plant tissue culture: Techniques and experiments. Academic Press.

    Google Scholar 

  32. Sun, K., Zhao, D., Liu, Y., Huang, C., Zhang, W., & Li, Z. (2017). Rapid construction of complex plant RNA virus infectious cDNA clones for agroinfection using a yeast-E. coli-Agrobacterium shuttle vector. Viruses, 9, 332.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sarmento, G., Alpert, K., Tang, F., & Punja, Z. (1992). Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell, Tissue and Organ Culture, 31, 185–193.

    Article  CAS  Google Scholar 

  34. Gouka, R. J., Gerk, C., Hooykaas, P. J., Bundock, P., Musters, W., Verrips, C. T., & de Groot, M. J. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nature Biotechnology, 17, 598–601.

    Article  CAS  PubMed  Google Scholar 

  35. Sutradhar, M., & Mandal, N. (2023). Reasons and riddance of Agrobacterium tumefaciens overgrowth in plant transformation. Transgenic Research, 32, 33–52.

    Article  CAS  PubMed  Google Scholar 

  36. Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W. A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, 1–15.

    Google Scholar 

  37. Calabuig-Serna, A., Mir, R., Porcel, R., & Seguí-Simarro, J. M. (2023). The Highly Embryogenic Brassica napus DH4079 line is recalcitrant to Agrobacterium-mediated genetic transformation. Plants, 12, 2008.

    Article  CAS  PubMed Central  Google Scholar 

  38. Hiei, Y., & Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 85, 271–283.

    Article  CAS  Google Scholar 

  39. Liu, H., Zhao, J., Chen, F., Wu, Z., Tan, J., Nguyen, N. H., Cheng, Z., & Weng, Y. (2023). Improving Agrobacterium tumefaciens−mediated genetic transformation for gene function studies and mutagenesis in cucumber (Cucumis sativus L.). Genes, 14, 601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dillen, W., De Clercq, J., Kapila, J., Zambre, M., Van Montagu, M., & Angenon, G. (1997). The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. The Plant Journal, 12, 1459–1463.

    Article  CAS  Google Scholar 

  41. Salas, M., Park, S., Srivatanakul, M., & Smith, R. (2001). Temperature influence on stable T-DNA integration in plant cells. Plant Cell Reports, 20, 701–705.

    Article  CAS  Google Scholar 

  42. Opabode, J. T. (2006). Agrobacterium-mediated transformation of plants: Emerging factors that influence efficiency. Biotechnology and Molecular Biology Reviews, 1, 12–20.

    Google Scholar 

  43. Kaur, A., Reddy, M. S., & Kumar, A. (2022). Heat shock enhanced Agrobacterium tumefaciens mediated T-DNA delivery to potato (Solanum tuberosum L.). Journal of Plant Biochemistry and Biotechnology. https://doi.org/10.1007/s13562-021-00762-1

    Article  Google Scholar 

  44. Teo, Y. L. (2022). Engineering of plasmid vectors for enhancing agrobacterium-mediated plant transformation. UTAR.

    Google Scholar 

  45. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W., & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 115, 971–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye, X., Shrawat, A., Moeller, L., Rode, R., Rivlin, A., Kelm, D., Martinell, B. J., Williams, E. J., Paisley, A., & Duncan, D. R. (2023). Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. Frontiers in Plant Science, 14, 1202235.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y., Miao, J., Traore, S., Kong, D., Liu, Y., Zhang, X., Nimchuk, Z. L., Liu, Z., & Zhao, B. (2016). SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation. Frontiers in Molecular Biosciences, 3, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Verma, S., Kumar, A., & Modgil, M. (2023). Impact of cefotaxime and kanamycin on in vitro regeneration via Agrobacterium mediated transformation in apple cv Red Chief. Plant Physiology Reports. https://doi.org/10.1007/s40502-023-00708-w

    Article  Google Scholar 

  49. Aalami, O., Azadi, P., Hadizadeh, H., Wilde, H. D., Karimian, Z., Nemati, H., & Samiei, L. (2023). Melatonin strongly enhances the Agrobacterium-mediated transformation of carnation in nitrogen-depleted media. BMC Plant Biology, 23, 316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du, C., Chai, L. A., Liu, C., Si, Y., & Fan, H. (2022). Improved Agrobacterium tumefaciens-mediated transformation using antibiotics and acetosyringone selection in cucumber. Plant Biotechnology Reports, 16, 17–27.

    Article  CAS  Google Scholar 

  51. Karami, O. (2008). Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J, 2, 127–137.

    Google Scholar 

  52. Koetle, M., Finnie, J., Balázs, E., & Van Staden, J. (2015). A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany, 98, 37–44.

    Article  CAS  Google Scholar 

  53. Veena, Jiang, H., Doerge, R., & Gelvin, S. B. (2003). Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. The Plant Journal, 35, 219–236.

    Article  CAS  PubMed  Google Scholar 

  54. Chilton, M.-D.M., & Que, Q. (2003). Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: New insights on the mechanism of T-DNA integration. Plant Physiology, 133, 956–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tzfira, T., Frankman, L. R., Vaidya, M., & Citovsky, V. (2003). Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiology, 133, 1011–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, Y., Lacroix, B., & Citovsky, V. (2021). Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochemical and Biophysical Research Communications, 554, 7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, Y., Kong, X., Pan, J., & Li, D. (2010). VIP1: Linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Reports, 29, 805–812.

    Article  CAS  PubMed  Google Scholar 

  58. Li, X., Yang, Q., Peng, L., Tu, H., Lee, L.-Y., Gelvin, S. B., & Pan, S. Q. (2020). Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences, 117, 26389–26397.

    Article  CAS  Google Scholar 

  59. Zhang, X., van Heusden, G. P. H., & Hooykaas, P. J. (2017). Virulence protein VirD5 of Agrobacterium tumefaciens binds to kinetochores in host cells via an interaction with Spt4. Proceedings of the National Academy of Sciences, 114, 10238–10243.

    Article  CAS  Google Scholar 

  60. Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the plant genome. Annual review of genetics, 51, 195–217.

    Article  CAS  PubMed  Google Scholar 

  61. Gelvin, S. B., & Liu, C.-N. (1994). Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species, in Plant molecular biology manual (pp. 85–97). Springer.

    Google Scholar 

  62. Rubin, B. E., Diamond, S., Cress, B. F., Crits-Christoph, A., Lou, Y. C., Borges, A. L., Shivram, H., He, C., Xu, M., & Zhou, Z. (2022). Species-and site-specific genome editing in complex bacterial communities. Nature Microbiology, 7, 34–47.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, K., Gao, Y., Li, Z.-H., Liu, M., Wang, F.-Q., & Wei, D.-Z. (2022). CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum. New Biotechnology, 66, 61–69.

    Article  CAS  PubMed  Google Scholar 

  64. Yue, S. J., Huang, P., Li, S., Cai, Y. Y., Wang, W., Zhang, X. H., Nikel, P. I., & Hu, H. B. (2022). Developing a CRISPR-assisted base-editing system for genome engineering of Pseudomonas chlororaphis. Microbial Biotechnology. https://doi.org/10.1111/1751-7915.14075

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bian, Z., Li, S., Yang, R., Yin, J., Zhang, Y., Tu, Q., Fu, J., & Li, R. (2022). Development of a new recombineering system for Agrobacterium species. Applied and Environmental Microbiology, 88, e02499-e2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, F., Li, G., Felix, G., Albert, M., & Guo, M. (2023). Engineered Agrobacterium improves transformation by mitigating plant immunity detection. New Phytologist, 237, 2493–2504.

    Article  CAS  PubMed  Google Scholar 

  67. Li, C., Wang, L., Cseke, L. J., Vasconcelos, F., Huguet-Tapia, J. C., Gassmann, W., Pauwels, L., White, F. F., Dong, H., & Yang, B. (2023). Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Communications Biology, 6, 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohli, A., Twyman, R. M., Abranches, R., Wegel, E., Stoger, E., & Christou, P. (2003). Transgene integration, organization and interaction in plants. Plant molecular biology, 52, 247–258.

    Article  CAS  PubMed  Google Scholar 

  69. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews, 67, 16–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Buck, S., De Wilde, C., Van Montagu, M., & Depicker, A. (2000). T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Molecular Breeding, 6, 459–468.

    Article  Google Scholar 

  71. Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H., & Komari, T. (2004). Suppression of transfer of non-T-DNA ‘vector backbone’sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Molecular Breeding, 14, 309–320.

    Article  Google Scholar 

  72. Sharma, K. K., & Anjaiah, V. (2000). An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Science, 159, 7–19.

    Article  CAS  PubMed  Google Scholar 

  73. Bhatnagar, M., Prasad, K., Bhatnagar-Mathur, P., Lakshmi Narasu, M., Waliyar, F., & Sharma, K. K. (2010). An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Reports, 29, 495–502.

    Article  CAS  PubMed  Google Scholar 

  74. Duan, Y., Zhai, C., Li, H., Li, J., Mei, W., Gui, H., Ni, D., Song, F., Li, L., & Zhang, W. (2012). An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Reports, 31, 1611–1624.

    Article  CAS  PubMed  Google Scholar 

  75. Baranski, R., Klimek-Chodacka, M., & Lukasiewicz, A. (2019). Approved genetically modified (GM) horticultural plants: A 25-year perspective. Folia Horticulturae, 31, 3–49.

    Article  Google Scholar 

  76. Shelton, A. M., Sarwer, S. H., Hossain, M. J., Brookes, G., & Paranjape, V. (2020). Impact of Bt brinjal cultivation in the market value chain in five districts of Bangladesh. Frontiers in Bioengineering and Biotechnology, 8, 498.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shelton, A., Hossain, M., Paranjape, V., Azad, A., Rahman, M., Khan, A., Prodhan, M., Rashid, M., Majumder, R., & Hossain, M. (2018). Bt eggplant project in Bangladesh: History, present status, and future direction. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2018.00106

    Article  PubMed  PubMed Central  Google Scholar 

  78. Smith, E. F., & Townsend, C. O. (1907). A plant-tumor of bacterial origin. Science, 25, 671–673.

    Article  CAS  PubMed  Google Scholar 

  79. Mohammed, A., & Abalaka, M. (2011). Agrobacterium transformation: A boost to agricultural biotechnology. Journal of Medical Genetics and Genomics, 3, 126–130.

    CAS  Google Scholar 

  80. Mehrotra, S., & Goyal, V. (2012). Agrobacterium-mediated gene transfer in plants and biosafety considerations. Applied biochemistry and biotechnology, 168, 1953–1975.

    Article  CAS  PubMed  Google Scholar 

  81. Herrera-Estrella, L. (1984). Transfer and expression of foreign genes in plants. Ghent University.

    Google Scholar 

  82. Nyaboga, E., Tripathi, J. N., Manoharan, R., & Tripathi, L. (2014). Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): An important tool for functional study of genes and crop improvement. Frontiers in Plant Science, 5, 463.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gnasekaran, P., James Antony, J. J., Uddain, J., & Subramaniam, S. (2014). Agrobacterium-mediated transformation of the recalcitrant vanda kasem’s delight orchid with higher efficiency. The Scientific World Journal. https://doi.org/10.1155/2014/583934

    Article  PubMed  PubMed Central  Google Scholar 

  84. Feldmann, K. A., & David Marks, M. (1987). Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Molecular and General Genetics MGG, 208, 1–9.

    Article  CAS  Google Scholar 

  85. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  86. Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U., & Nam, H. G. (1994). Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant Journal, 5, 551–558.

    Article  CAS  Google Scholar 

  87. Rod-in, W., Sujipuli, K., & Ratanasut, K. (2014). The floral-dip method for rice (Oryza sativa) transformation. Journal of Agricultural Technology, 10, 467–474.

    CAS  Google Scholar 

  88. Eapen, S. (2011). Pollen grains as a target for introduction of foreign genes into plants: An assessment. Physiology and Molecular Biology of Plants, 17, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang, T., & Chen, T. (2012). Cotton pistil drip transformation method, in Transgenic Plants (pp. 237–243). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Raza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.U., Khan, M.O., Ullah, R. et al. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00826-8

Keywords

Navigation