Skip to main content

Advertisement

Log in

Circular RNA Dipeptidyl Peptidase 4 (circDPP4) Stimulates the Expression of Glutamate Dehydrogenase 1 to Contribute to the Malignant Phenotypes of Prostate Cancer by Sponging miR-497-5p

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Circular RNA dipeptidyl peptidase 4 (circDPP4) has been confirmed as a novel oncogene in prostate cancer (PCa). In this study, we aimed to explore the underlying mechanism of circDPP4 in PCa progression. Levels of circDPP4, microRNA (miR)-497-5p, glutamate dehydrogenase 1 (GLUD1), proliferating cell nuclear antigen (PCNA), BCL2 associated X, apoptosis regulator (Bax), E-cadherin and Ki67 were gauged by a quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, or immunohistochemical method. We assessed the roles of variables in PCa cell phenotypes by measuring cell growth, apoptosis, motility and invasiveness. We performed RNA immunoprecipitation (RIP) and dual-luciferase reporter assays to confirm the interactions of circDPP4/miR-497-5p and miR-497-5p/GLUD1. A xenograft model was established to gauge the effect of circDPP4 in the tumorigenicity of PCa cells. PCa tumor tissues and cell lines revealed higher levels of circDPP4 and GLUD1 and a lower expression of miR-497-5p than controls. CircDPP4 silencing hindered the growth, motility and invasiveness of PCa cells. Conversely, silencing circDPP4 enhanced PCa cell apoptosis. Mechanistic analysis showed that circDPP4 functioned as a miR-497-5p sponge to reduce the suppressive action of miR-497-5p on GLUD1, which was validated as a direct miR-497-5p target. Furthermore, circDPP4 knockdown weakened the tumorigenicity of PCa cells. CircDPP4 facilitated PCa process by mediating the miR-497-5p/GLUD1 axis, providing a possible therapy target for PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, C., Wang, W., Lin, P., Xie, H., Jiang, S., Jia, H., Li, R., Wang, N., & Xiaoguang, Yu. (2021). GDI2 is a target of paclitaxel that affects tumorigenesis of prostate cancer via the p75NTR signaling pathway. Biochemical and Biophysical Research Communications., 562, 119–126.

    Article  PubMed  CAS  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66, 7–30.

    PubMed  Google Scholar 

  3. Adamaki, M., & Zoumpourlis, V. (2021). Prostate cancer biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacology & Therapeutics, 228, 107932.

    Article  CAS  Google Scholar 

  4. Rebello, R. J., Oing, C., Knudsen, K. E., Loeb, S., Johnson, D. C., Reiter, R. E., Gillessen, S., Van der Kwast, T., & Bristow, R. G. (2021). Prostate cancer. Nature Reviews Disease Primers, 7, 9.

    Article  PubMed  Google Scholar 

  5. Sandhu, S., Moore, C. M., Chiong, E., Beltran, H., Bristow, R. G., & Williams, S. G. (2021). Prostate cancer. Lancet, 398, 1075–1090.

    Article  PubMed  CAS  Google Scholar 

  6. Bill-Axelson, A., Holmberg, L., Garmo, H., Taari, K., Busch, C., Nordling, S., Häggman, M., Andersson, S.-O., Andrén, O., Steineck, G., Adami, H.-O., & Johansson, J.-E. (2018). Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. New England Journal of Medicine, 379, 2319–2329.

    Article  PubMed  Google Scholar 

  7. Sartor, O., & de Bono, J. S. (2018). Metastatic prostate cancer. New England Journal of Medicine, 378, 1653–1654.

    Article  PubMed  Google Scholar 

  8. Meehan, J., Gray, M., Martinez-Perez, C., Kay, C., McLaren, D., & Turnbull, A. K. (2021). Tissue- and liquid-based biomarkers in prostate cancer precision medicine. Journal of Personalized Medicine, 11, 664.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hatakeyama, S., Yoneyama, T., Tobisawa, Y., & Ohyama, C. (2017). Recent progress and perspectives on prostate cancer biomarkers. International Journal of Clinical Oncology, 22, 214–221.

    Article  PubMed  CAS  Google Scholar 

  10. Verduci, L., Tarcitano, E., Strano, S., Yarden, Y., & Blandino, G. (2021). CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death & Disease, 12, 468.

    Article  CAS  Google Scholar 

  11. Tao, M., Zheng, M., Xu, Y., Ma, S., Zhang, W., & Ju, S. (2021). CircRNAs and their regulatory roles in cancers. Molecular Medicine, 27, 94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saaoud, F., IV., Shao, C. D., Sun, Y., Lu, Y., Xu, Y., Ni, K., Jiang, D., Wang, X., & Yang, H. (2021). Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacology & therapeutics, 220, 107715.

    Article  CAS  Google Scholar 

  13. Garlapati, P., Ling, J., Chiao, P. J., & Fu, J. (2021). Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell International, 21, 317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, X., Wang, J., Long, H., Lin, W., Wang, H., Chen, Y., Yuan, Q., & Li, X. (2021). circCDYL2, overexpressed in highly migratory colorectal cancer cells, promotes migration by binding to Ezrin. Frontiers in Oncology, 11, 716073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mo, Y., Wang, Y., Zhang, S., Xiong, F., Yan, Q., Jiang, X., Deng, X., Wang, Y., Fan, C., Tang, Le., Zhang, S., Gong, Z., Wang, F., Liao, Q., Guo, C., Li, Y., Li, X., Li, G., Zeng, Z., & Xiong, W. (2021). Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Molecular Cancer, 20, 112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sha, J., Xia, L., Han, Q., Chi, C., Zhu, Y., Pan, J., & Huang, Y. (2020). Downregulation of circ-TRPS1 suppressed prostatic cancer prognoses by regulating miR-124-3p/EZH2 axis-mediated stemness. American Journal of Cancer Research, 10, 4372–4385.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Xie, Y., Liu, Z., & Zhu, H. (2021). Knockdown of hsa_circ_0091994 constrains gastric cancer progression by suppressing the miR-324-5p/HMGA1 axis. Aging (Albany NY), 13, 20598–20608.

    Article  PubMed  CAS  Google Scholar 

  18. Fang, J., Qi, J., Dong, X., & Luo, J. (2020). Perspectives on circular RNAs as prostate cancer biomarkers. Frontiers in Cell and Developmental Biology, 8, 594992.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shan, G., Shao, Bo., Qiang Liu, Yu., Zeng, C. F., Chen, A., & Chen, Q. (2020). circFMN2 sponges miR-1238 to promote the expression of LIM-homeobox gene 2 in prostate cancer cells. Molecular Therapy - Nucleic Acids, 21, 133–146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Abramovic, I., Ulamec, M., Katusic Bojanac, A., Bulic-Jakus, F., Jezek, D., & Sincic, N. (2020). miRNA in prostate cancer: Challenges toward translation. Epigenomics, 12, 543–558.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu, X., Ma, X., Zhao, S., & Cao, Z. (2021). DLX6-AS1 accelerates cell proliferation through regulating miR-497-5p/SNCG pathway in prostate cancer. Environmental Toxicology, 36, 308–319.

    Article  PubMed  CAS  Google Scholar 

  22. Kong, X. J., Duan, L. J., Qian, X. Q., Xu, D., Liu, H. L., Zhu, Y. J., & Qi, J. (2015). Tumor-suppressive microRNA-497 targets IKKbeta to regulate NF-kappaB signaling pathway in human prostate cancer cells. American Journal of Cancer Research, 5, 1795–1804.

    PubMed  PubMed Central  Google Scholar 

  23. Zuo, Y., Shen, W., Wang, C., Niu, N., & Pu, J. (2020). Circular RNA Circ-ZNF609 promotes lung adenocarcinoma proliferation by modulating miR-1224-3p/ETV1 signaling. Cancer Management and Research, 12, 2471–2479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen, C., He, W., Huang, J., Wang, B., Li, H., Cai, Q., Su, F., Bi, J., Liu, H., Zhang, B., & Jiang, N. (2018). LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nature Communications, 9, 3826.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lima, A. R., Pinto, J., Amaro, F., Bastos, M. L., Carvalho, M., & Guedes de Pinho, P. (2021). Advances and perspectives in prostate cancer biomarker discovery in the last 5 years through tissue and urine metabolomics. Metabolites, 11, 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Qu, Z., Ren, Y., Shen, H., Wang, H., Shi, L., & Tong, D. (2021). Combination therapy of metastatic castration-recurrent prostate cancer: hyaluronic acid decorated, cabazitaxel-prodrug and orlistat co-loaded nano-system. Drug Design, Development and Therapy, 15, 3605–3616.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu, L., Jiang, Z., Li, T., Hu, Y., & Guo, J. (2018). Circular RNAs in hepatocellular carcinoma: Functions and implications. Cancer Medicine, 7, 3101–3109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Greene, J., Baird, A. M., Lim, M., Flynn, J., McNevin, C., Brady, L., Sheils, O., Gray, S. G., McDermott, R., & Finn, S. P. (2021). Differential CircRNA Expression Signatures May Serve as Potential Novel Biomarkers in Prostate Cancer. Frontiers in Cell and Developmental Biology., 9, 605686.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhong, C., Kaihui, Wu., Wang, S., Long, Z., Yang, T., Zhong, W., Tan, X., Wang, Z., Li, C., Jianming, Lu., & Mao, X. (2021). Autophagy-related circRNA evaluation reveals hsa_circ_0001747 as a potential favorable prognostic factor for biochemical recurrence in patients with prostate cancer. Cell Death & Disease, 12, 726.

    Article  CAS  Google Scholar 

  30. Zhang, G., Liu, Y., Yang, J., Wang, H., & Xing, Z. (2021). Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via miR-1/MAP3K1 axis. The Journal of Gene Medicine, 24, e3376.

    Article  Google Scholar 

  31. Yang, D., Yang, Bo., Zhu, Y., Xia, Q., Zhang, Y., Zhu, X., Guo, J., Ding, T., & Zheng, J. (2021). Circular RNA-DPP4 serves an oncogenic role in prostate cancer progression through regulating miR-195/cyclin D1 axis. Cancer Cell International, 21, 379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xu, S. H., Bo, Y. H., Ma, H. C., Zhang, H. N., & Shao, M. J. (2021). lncRNA LINC00473 promotes proliferation, migration, invasion and inhibition of apoptosis of non-small cell lung cancer cells by acting as a sponge of miR-497-5p. Oncology Letters, 21, 429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hu, J., Peng, X., Du, W., Huang, Y., Zhang, C., & Zhang, X. (2021). circSLC6A6 sponges miR-497-5p to promote endometrial cancer progression via the PI4KB/hedgehog axis. Journal of Immunology Research, 2021, 5512391.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Talukdar, S., Emdad, L., Gogna, R., Das, S. K., & Fisher, P. B. (2021). Metabolic control of cancer progression as novel targets for therapy. Advances in Cancer Research, 152, 103–177.

    Article  PubMed  CAS  Google Scholar 

  35. Chakrabarti, G., Moore, Z. R., Luo, X., Ilcheva, M., Ali, A., Padanad, M., et al. (2015). Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-lapachone. Cancer Metab, 3, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. He, J., Mao, Y., Huang, W., Li, M., Zhang, H., Qing, Y., et al. (2020). Methylcrotonoyl-CoA carboxylase 2 promotes proliferation, migration and invasion and inhibits apoptosis of prostate cancer cells through regulating GLUD1-P38 MAPK signaling pathway. Oncotargets and Therapy, 13, 7317–7327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. He, J., Li, F., Zhou, Y., Hou, X., Liu, S., Li, X., Zhang, Y., Jing, X., & Yang, L. (2020). LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Letters., 469, 419–428.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, R., Li, X., Yanan, Wu., Zhang, G., Liu, X., Li, Y., Bao, Y., Yang, W., & Cui, H. (2020). EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene, 39, 2975–2986.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XT designed and supervised the study. LP conducted the experiments and drafted the manuscript. XS and XL collected and analyzed the data. ML contributed the methodology. AZ edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaoliang Tan.

Ethics declarations

Competing Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was authorized by the Ethics Committee of the Fourth Hospital of Hebei Medical University.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, L., Song, X., Liang, X. et al. Circular RNA Dipeptidyl Peptidase 4 (circDPP4) Stimulates the Expression of Glutamate Dehydrogenase 1 to Contribute to the Malignant Phenotypes of Prostate Cancer by Sponging miR-497-5p. Mol Biotechnol 66, 241–253 (2024). https://doi.org/10.1007/s12033-023-00750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00750-x

Keywords

Navigation