Skip to main content

Advertisement

Log in

Inhibition of the Tumor Suppressor Gene SPINK5 via EHMT2 Induces the Oral Squamous Cell Carcinoma Development

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Serine protease inhibitor Kazal-type 5 (SPINK5) has been revealed as a significant prognostic biomarker in oral squamous cell carcinoma (OSCC). However, there is little information regarding the detailed epigenetics mechanism underlying its dysregulation in OSCC. Using the Gene Expression Omnibus database, we identified SPINK5 as a significantly downregulated gene in OSCC tissues. Moreover, SPINK5 inhibited the malignant aggressiveness of HSC3 and squamous cell carcinomas (SCC)9 cells, whereas depletion of SPINK5 using shRNAs led to the opposite trend. The euchromatic histone lysine methyltransferase 2 (EHMT2) was found to bind to the SPINK5 promoter, and EHMT2 repressed the SPINK5 expression. SPINK5 reversed the stimulating effects of EHMT2 on the aggressiveness of HSC3 and SCC9 cells by impairing the Wnt/β-catenin pathway. Wnt/β-catenin inhibitor IWR-1 treatment reverted the malignant phenotype of OSCC cells in the presence of short hairpin RNA (sh)-SPINK5. Silencing of EHMT2 inhibited tumor growth and blocked the Wnt/β-catenin signaling in OSCC, which was reversed by SPINK5 knockdown. Our study shows that SPINK5, mediated by the loss of EHMT2, can inhibit the development of OSCC by inhibiting Wnt/β-catenin signaling and may serve as a treatment target for OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data generated or analyzed during this study are included in this published article.

References

  1. Marur, S., & Forastiere, A. A. (2016). Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clinic Proceedings, 91(3), 386–396. https://doi.org/10.1016/j.mayocp.2015.12.017

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Fuchs, H. E. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  3. Chen, S. H., Hsiao, S. Y., Chang, K. Y., & Chang, J. Y. (2021). New insights into oral squamous cell carcinoma: From clinical aspects to molecular tumorigenesis. International Journal of Molecular Sciences, 22(5), 1. https://doi.org/10.3390/ijms22052252

    Article  CAS  Google Scholar 

  4. Ling, Z., Cheng, B., & Tao, X. (2021). Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. International Journal of Cancer, 148(7), 1548–1561. https://doi.org/10.1002/ijc.33352

    Article  PubMed  CAS  Google Scholar 

  5. Wu, H. T., Chen, W. T., Chen, W. J., Li, C. L., & Liu, J. (2021). Bioinformatics analysis reveals that ANXA1 and SPINK5 are novel tumor suppressor genes in patients with oral squamous cell carcinoma. Translational Cancer Research, 10(4), 1761–1772. https://doi.org/10.21037/tcr-20-3382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang, J., Rong, J., Ge, W., Wang, J., Wang, W., & Chi, H. (2022). SPINK5 is a tumor-suppressor gene involved in the progression of nonsmall cell lung carcinoma through negatively regulating PSIP1. Journal of Healthcare Engineering, 2022, 2209979. https://doi.org/10.1155/2022/2209979

    Article  PubMed  PubMed Central  Google Scholar 

  7. Suwei, D., Yanbin, X., Jianqiang, W., Xiang, M., Zhuohui, P., Jianping, K., Yunqing, W., & Zhen, L. (2022). Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cellular & Molecular Biology Letters, 27(1), 48. https://doi.org/10.1186/s11658-022-00353-5

    Article  CAS  Google Scholar 

  8. Gonzalez-Ramirez, I., Soto-Reyes, E., Sanchez-Perez, Y., Herrera, L. A., & Garcia-Cuellar, C. (2014). Histones and long non-coding RNAs: The new insights of epigenetic deregulation involved in oral cancer. Oral Oncology, 50(8), 691–695. https://doi.org/10.1016/j.oraloncology.2014.04.006

    Article  PubMed  CAS  Google Scholar 

  9. Nowak, E., & Bednarek, I. (2021). Aspects of the epigenetic regulation of EMT related to cancer metastasis. Cells. https://doi.org/10.3390/cells10123435

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, C. C., Shen, Z., Bavarian, R., Yang, F., & Bhattacharya, A. (2020). Oral cancer: Genetics and the role of precision medicine. Surgical Oncology Clinics of North America, 29(1), 127–144. https://doi.org/10.1016/j.soc.2019.08.010

    Article  PubMed  Google Scholar 

  11. Zhao, C., Zou, H., Zhang, J., Wang, J., & Liu, H. (2018). An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncology Reports, 40(5), 2637–2647. https://doi.org/10.3892/or.2018.6702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Casciello, F., Windloch, K., Gannon, F., & Lee, J. S. (2015). Functional role of G9a histone methyltransferase in cancer. Frontiers in Immunology, 6, 487. https://doi.org/10.3389/fimmu.2015.00487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li, R. G., Deng, H., Liu, X. H., Chen, Z. Y., Wan, S. S., & Wang, L. (2021). Histone methyltransferase G9a promotes the development of renal cancer through epigenetic silencing of tumor suppressor gene SPINK5. Oxidative Medicine and Cellular Longevity, 2021, 6650781. https://doi.org/10.1155/2021/6650781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xie, J., Huang, L., Lu, Y. G., & Zheng, D. L. (2020). Roles of the Wnt Signaling pathway in head and neck squamous cell carcinoma. Frontiers in Molecular Biosciences, 7, 590912. https://doi.org/10.3389/fmolb.2020.590912

    Article  PubMed  CAS  Google Scholar 

  15. Martins-Neves, S. R., Paiva-Oliveira, D. I., Fontes-Ribeiro, C., Bovee, J., Cleton-Jansen, A. M., & Gomes, C. M. F. (2018). IWR-1, a tankyrase inhibitor, attenuates Wnt/beta-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Letters, 414, 1–15. https://doi.org/10.1016/j.canlet.2017.11.004

    Article  PubMed  CAS  Google Scholar 

  16. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  17. Wang, Y., Ren, X., Li, W., Cao, R., Liu, S., Jiang, L., Cheng, B., & Xia, J. (2021). SPDEF suppresses head and neck squamous cell carcinoma progression by transcriptionally activating NR4A1. International Journal of Oral Science, 13(1), 33. https://doi.org/10.1038/s41368-021-00138-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu, L., Cui, J., Zhao, Y., Liu, X., Chen, L., Xia, Y., Wang, Y., Chen, S., Sun, S., Shi, B., & Zou, Y. (2021). KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Molecular Cancer, 20(1), 77. https://doi.org/10.1186/s12943-021-01369-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Peng, Q. S., Cheng, Y. N., Zhang, W. B., Fan, H., Mao, Q. H., & Xu, P. (2020). circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death & Disease, 11(2), 112. https://doi.org/10.1038/s41419-020-2273-y

    Article  CAS  Google Scholar 

  20. Vallina, C., Lopez-Pintor, R. M., Gonzalez-Serrano, J., de Vicente, J. C., Hernandez, G., & Lorz, C. (2021). Genes involved in the epithelial–mesenchymal transition in oral cancer: A systematic review. Oral Oncology, 117, 105310. https://doi.org/10.1016/j.oraloncology.2021.105310

    Article  PubMed  CAS  Google Scholar 

  21. Leusink, F. K., van Diest, P. J., Frank, M. H., Broekhuizen, R., Braunius, W., van Hooff, S. R., Willems, S. M., & Koole, R. (2015). The co-expression of kallikrein 5 and kallikrein 7 associates with poor survival in non-HPV oral squamous-cell carcinoma. Pathobiology, 82(2), 58–67. https://doi.org/10.1159/000381904

    Article  PubMed  CAS  Google Scholar 

  22. Rasanen, K., Itkonen, O., Koistinen, H., & Stenman, U. H. (2016). Emerging roles of SPINK1 in cancer. Clinical Chemistry, 62(3), 449–457. https://doi.org/10.1373/clinchem.2015.241513

    Article  PubMed  CAS  Google Scholar 

  23. Lv, Z., Wu, K., Qin, X., Yuan, J., Yan, M., Zhang, J., Wang, L., Ji, T., Cao, W., & Chen, W. (2020). A novel tumor suppressor SPINK5 serves as an independent prognostic predictor for patients with head and neck squamous cell carcinoma. Cancer Management and Research, 12, 4855–4869. https://doi.org/10.2147/CMAR.S236266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shyu, R. Y., Wang, C. H., Wu, C. C., Wang, L. K., Chen, M. L., Kuo, C. Y., Lee, M. C., Lin, Y. Y., & Tsai, F. M. (2019). Tazarotene-induced gene 1 (TIG1) interacts with serine protease inhibitor Kazal-type 2 (SPINK2) to inhibit cellular invasion of testicular carcinoma cells. BioMed Research International, 2019, 6171065. https://doi.org/10.1155/2019/6171065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhong, X., Chen, X., Guan, X., Zhang, H., Ma, Y., Zhang, S., Wang, E., Zhang, L., & Han, Y. (2015). Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology, 66(2), 192–200. https://doi.org/10.1111/his.12456

    Article  PubMed  Google Scholar 

  26. Ren, A., Qiu, Y., Cui, H., & Fu, G. (2015). Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma. Biochemical and Biophysical Research Communications, 459(1), 10–17. https://doi.org/10.1016/j.bbrc.2015.01.068

    Article  PubMed  CAS  Google Scholar 

  27. Rahman, Z., Bazaz, M. R., Devabattula, G., Khan, M. A., & Godugu, C. (2021). Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. Journal of Biochemical and Molecular Toxicology, 35(3), e22674. https://doi.org/10.1002/jbt.22674

    Article  PubMed  CAS  Google Scholar 

  28. Nachiyappan, A., Gupta, N., & Taneja, R. (2022). EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging evidence and mechanisms. FEBS Journal, 289(5), 1329–1351. https://doi.org/10.1111/febs.16334

    Article  PubMed  CAS  Google Scholar 

  29. Chaw, S. Y., Abdul Majeed, A., Dalley, A. J., Chan, A., Stein, S., & Farah, C. S. (2012). Epithelial to mesenchymal transition (EMT) biomarkers—E-cadherin, beta-catenin, APC and Vimentin—In oral squamous cell carcinogenesis and transformation. Oral Oncology, 48(10), 997–1006. https://doi.org/10.1016/j.oraloncology.2012.05.011

    Article  PubMed  CAS  Google Scholar 

  30. Hsiao, S. M., Chen, M. W., Chen, C. A., Chien, M. H., Hua, K. T., Hsiao, M., Kuo, M. L., & Wei, L. H. (2015). The H3K9 methyltransferase G9a represses E-cadherin and is associated with myometrial invasion in endometrial cancer. Annals of Surgical Oncology, 22(Suppl 3), S1556-1565. https://doi.org/10.1245/s10434-015-4379-5

    Article  PubMed  Google Scholar 

  31. Nagaraja, S. S., Subramanian, U., & Nagarajan, D. (2021). Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis: Role of G9a signaling during lung epithelial-mesenchymal transition. Toxicology In Vitro, 70, 105037. https://doi.org/10.1016/j.tiv.2020.105037

    Article  PubMed  CAS  Google Scholar 

  32. Wang, Q., Lv, Q., Bian, H., Yang, L., Guo, K. L., Ye, S. S., Dong, X. F., & Tao, L. L. (2019). A novel tumor suppressor SPINK5 targets Wnt/beta-catenin signaling pathway in esophageal cancer. Cancer Medicine, 8(5), 2360–2371. https://doi.org/10.1002/cam4.2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bai, Y., Sha, J., & Kanno, T. (2020). The role of carcinogenesis-related biomarkers in the Wnt pathway and their effects on epithelial–mesenchymal transition (EMT) in oral squamous cell carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers12030555

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

GS contributed to the conception and design of the study, data analysis, and interpretation, and also drafted and revised the manuscript. XJZ contributed to the analysis and interpretation of the data. SZS contributed to the data collection, statistical analysis, and review of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suzhen Sun.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Ethical Approval

Informed consent was acquired from all patients, and the study was carried out according to the World Medical Association Declaration of Helsinki. This study was approved by the Institutional Ethics Committee of Ningbo First Hospital. All animal studies were conducted under a protocol permitted by the Institutional Animal Care and Use Committee of Ningbo First Hospital following NIH guidelines for the ethical treatment of animals.

Consent to Participate

Written informed consent for publication was obtained from all participants.

Consent for Publication

All authors read the journal’s guidelines and agreed with the consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1147 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Su, G. & Zheng, X. Inhibition of the Tumor Suppressor Gene SPINK5 via EHMT2 Induces the Oral Squamous Cell Carcinoma Development. Mol Biotechnol 66, 208–221 (2024). https://doi.org/10.1007/s12033-023-00740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00740-z

Keywords

Navigation