Skip to main content

Advertisement

Log in

Advantages of Material Biofunctionalization Using Nucleic Acid Aptamers in Tissue Engineering and Regenerative Medicine

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Material engineering is a fundamental issue in the applications of materials in the medical field. One of the aspects of material engineering is incorporating recognition sites on the surface of biomaterials, which plays an essential role in increasing the efficiency of tissue engineering scaffolds in various aspects. The application of peptides and antibodies to establish the recognition and adhesion sites has limitations, such as fragility and instability under physical and chemical processes. Therefore, synthetic ligands such as nucleic acid aptamers have received much attention for easy synthesis, minimal immunogenicity, high specificity, and stability under processing. Due to the effective role of these ligands in increasing the efficiency of engineered constructs in this study, the advantages of nucleic acid aptamers in tissue engineering will be reviewed. Aptamer-functionalized biomaterials can attract endogenous stem cells to wounded areas and organize their actions to facilitate tissue regeneration. This approach harnesses the body’s inherent regeneration potential to treat many diseases. Also, increased efficacy in controlled release, slow and targeted drug delivery are important issues in drug delivery for tissue engineering approaches which can be achieved by incorporating aptamers in drug delivery systems. Aptamer-functionalized scaffolds have very applications, such as diagnosis of cancer, hematological infections, narcotics, heavy metals, toxins, controlled release from the scaffolds, and in vivo cell tracing. Aptasensors, as a result of many advantages over other traditional assay methods, can replace older methods. Furthermore, their unique targeting mechanism also targets compounds with no particular receptors. Targeting cell homing, local and targeted drug delivery, cell adhesion efficacy, cytocompatibility and bioactivity of scaffolds, aptamer-based biosensor, and aptamer-functionalized scaffolds are the topics that will be examined in this review study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated during this study are available within the paper.

References

  1. Schneider, C., Langer, R., Loveday, D., & Hair, D. (2017). Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. Journal of Controlled Release, 262, 284–295.

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, R. G. (1910). The outgrowth of the nerve fiber as a mode of protoplasmic movement. Journal of Experimental Zoology, 9(4), 787–846.

    Article  Google Scholar 

  3. Ambekar, R. S., & Kandasubramanian, B. (2019). Progress in the advancement of porous biopolymer scaffold: Tissue engineering application. Industrial & Engineering Chemistry Research, 58(16), 6163–6194.

    Article  CAS  Google Scholar 

  4. Place, E. S., Evans, N. D., & Stevens, M. M. (2009). Complexity in biomaterials for tissue engineering. Nature materials, 8(6), 457–470.

    Article  CAS  PubMed  Google Scholar 

  5. Hanson, S., D’souza, R. N., & Hematti, P. (2014). Biomaterial–mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Engineering Part A, 20(15–16), 2162–2168.

    Article  PubMed  Google Scholar 

  6. Abune, L., Davis, B., & Wang, Y. (2021). Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1731

    Article  PubMed  Google Scholar 

  7. Han, W., Allio, B. A., Foster, D. G., & King, M. R. (2010). Nanoparticle coatings for enhanced capture of flowing cells in microtubes. ACS Nano, 4(1), 174–180.

    Article  CAS  PubMed  Google Scholar 

  8. Ito, Y. (2008). Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter, 4(1), 46–56.

    Article  CAS  Google Scholar 

  9. Reinherz, E. L., Kung, P. C., Goldstein, G., & Schlossman, S. F. (1979). Separation of functional subsets of human T cells by a monoclonal antibody. Proceedings of the National Academy of Sciences, 76(8), 4061–4065.

    Article  CAS  Google Scholar 

  10. Malmqvist, M. (1993). Biospecific interaction analysis using biosensor technology. Nature, 361(6408), 186–187.

    Article  CAS  PubMed  Google Scholar 

  11. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano letters, 5(5), 829–834.

    Article  CAS  PubMed  Google Scholar 

  12. Lutolf, M., & Hubbell, J. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology, 23(1), 47–55.

    Article  CAS  PubMed  Google Scholar 

  13. Kiessling, L. L., Gestwicki, J. E., & Strong, L. E. (2000). Synthetic multivalent ligands in the exploration of cell-surface interactions. Current opinion in chemical biology, 4(6), 696–703.

    Article  CAS  PubMed  Google Scholar 

  14. Bunka, D. H., & Stockley, P. G. (2006). Aptamers come of age–at last. Nature Reviews Microbiology, 4(8), 588–596.

    Article  CAS  PubMed  Google Scholar 

  15. Ardjomandi, N., Niederlaender, J., Aicher, W. K., Reinert, S., Schweizer, Et., Wendel, H.-P., & Alexander, D. (2013). Identification of an aptamer binding to human osteogenic-induced progenitor cells. Nucleic acid therapeutics, 23(1), 44–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma, H., Jinping Liu, M., Monsur Ali, M., Mahmood, A. I., Labanieh, L., Mengrou, L., Iqbal, S. M., Zhang, Q., Zhao, W., & Wan, Y. (2015). Nucleic acid aptamers in cancer research, diagnosis and therapy. Chemical Society Reviews, 44(5), 1240–1256.

    Article  CAS  PubMed  Google Scholar 

  17. Soontornworajit, B., & Wang, Y. (2011). Nucleic acid aptamers for clinical diagnosis: Cell detection and molecular imaging. Analytical and bioanalytical chemistry, 399(4), 1591–1599.

    Article  CAS  PubMed  Google Scholar 

  18. Gaddes, E. R., Gydush, G., Li, S., Chen, N., Dong, C., & Wang, Y. (2015). Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface. Biomacromolecules, 16(4), 1382–1389.

    Article  CAS  PubMed  Google Scholar 

  19. Ireson, C. R., & Kelland, L. R. (2006). Discovery and development of anticancer aptamers. Molecular cancer therapeutics, 5(12), 2957–2962.

    Article  CAS  PubMed  Google Scholar 

  20. E. S. Group. (2002). Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 22(2), 143–152.

    Article  Google Scholar 

  21. Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nature reviews Drug discovery, 9(7), 537–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morita, Y., Leslie, M., Kameyama, H., Volk, D. E., & Tanaka, T. (2018). Aptamer therapeutics in cancer: Current and future. Cancers, 10(3), 80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ni, S., Yao, H., Wang, L., Jun, L., Jiang, F., Aiping, L., & Zhang, G. (2017). Chemical modifications of nucleic acid aptamers for therapeutic purposes. International journal of molecular sciences, 18(8), 1683.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kovacevic, K. D., Gilbert, J. C., & Jilma, B. (2018). Pharmacokinetics, pharmacodynamics and safety of aptamers. Advanced drug delivery reviews, 134, 36–50.

    Article  CAS  PubMed  Google Scholar 

  25. Hassanzadeh, L., Chen, S., & Veedu, R. N. (2018). Radiolabeling of nucleic acid aptamers for highly sensitive disease-specific molecular imaging. Pharmaceuticals, 11(4), 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, T., Chen, C., Larcher, L. M., Barrero, R. A., & Veedu, R. N. (2019). Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnology advances, 37(1), 28–50.

    Article  CAS  PubMed  Google Scholar 

  27. Ali, M. H., Elsherbiny, M. E., & Emara, M. (2019). Updates on aptamer research. International journal of molecular sciences, 20(10), 2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Odeh, F., et al. (2019). Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules, 25(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cai, S., Yan, J., Xiong, H., Liu, Y., Peng, D., & Liu, Z. (2018). Investigations on the interface of nucleic acid aptamers and binding targets. The Analyst, 143(22), 5317–5338.

    Article  CAS  PubMed  Google Scholar 

  30. Bayat, P., Nosrati, R., Alibolandi, M., Rafatpanah, H., Abnous, K., Khedri, M., & Ramezani, M. (2018). SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie, 154, 132–155.

    Article  CAS  PubMed  Google Scholar 

  31. Yoon, S., & Rossi, J. J. (2017). Emerging cancer-specific therapeutic aptamers. Current opinion in oncology, 29(5), 366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu, Z., & Xiang, J. (2020). Aptamers, the nucleic acid antibodies, in cancer therapy. International Journal of Molecular Sciences, 21(8), 2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haßel, S., & Mayer, G. (2019). Aptamers as therapeutic agents: Has the initial euphoria subsided? Molecular Diagnosis & Therapy, 23(3), 301–309.

    Article  Google Scholar 

  34. Tan, Y., Li, Y., & Tang, F. (2019). Nucleic acid aptamer: A novel potential diagnostic and therapeutic tool for leukemia. OncoTargets and therapy, 12, 10597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta, S., Drolet, D. W., Wolk, S. K., Waugh, S. M., Rohloff, J. C., Carter, J. D., Mayfield, W. S., Otis, M. R., Fowler, C. R., Suzuki, T., Hirota, M., Ishikawa, Y., Schneider, D. J., & Janjic, N. (2017). Pharmacokinetic properties of DNA aptamers with base modifications. Nucleic Acid Therapeutics, 27(6), 345–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newman, M. R., & Benoit, D. S. (2016). Local and targeted drug delivery for bone regeneration. Current opinion in biotechnology, 40, 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warnke, P. H. (2010). In-vivo tissue engineering of biological joint replacements. The Lancet, 376(9739), 394–396.

    Article  Google Scholar 

  38. Chen, F.-M., Zhang, J., Zhang, M., An, Y., Chen, F., & Wu, Z.-F. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 31(31), 7892–7927.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, F.-M., Wu, L.-A., Zhang, M., Zhang, R., & Sun, H.-H. (2011). Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 32(12), 3189–3209.

    Article  CAS  PubMed  Google Scholar 

  40. Adam, C. (2012). Endogenous musculoskeletal tissue engineering-a focused perspective. Cell and tissue research, 347(3), 489–499.

    Article  CAS  PubMed  Google Scholar 

  41. Takahata, M., Awad, H. A., O’Keefe, R. J., Bukata, S. V., & Schwarz, E. M. (2012). Endogenous tissue engineering: PTH therapy for skeletal repair. Cell and tissue research, 347(3), 545–552.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, R.-X., Xu, X.-Y., Wang, J., He, X.-T., Sun, H.-H., & Chen, F.-M. (2018). Biomaterials for endogenous regenerative medicine: Coaxing stem cell homing and beyond. Applied Materials Today, 11, 144–165.

    Article  Google Scholar 

  43. Luo, Z., Chen, S., Zhou, J., Wang, C., Li, K., Liu, J., Tang, Y., & Wang, L. (2022). Application of aptamers in regenerative medicine. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2022.976960

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hoffmann, J., Paul, A., Harwardt, M., Groll, J., Reeswinkel, T., Klee, D., Moeller, M., Fischer, H., Walker, T., Greiner, T., Ziemer, G., & Wendel, H. P. (2008). Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 84(3), 614–621.

    Article  Google Scholar 

  45. Xiaoxia, H., Wang, Y., Tan, Y., Wang, J., Liu, H., Wang, Y., Yang, S., Shi, M., Zhao, S., Zhang, Y., & Yuan, Q. (2017). A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Advanced Materials, 29(15), 1605235.

    Article  Google Scholar 

  46. Enam, S. F., Krieger, J. R., Saxena, T., Watts, B. E., Olingy, C. E., Botchwey, E. A., & Bellamkonda, R. V. (2017). Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels. Biomaterials, 142, 52–61.

    Article  CAS  PubMed  Google Scholar 

  47. Ekenseair, A. K., Kasper, F. K., & Mikos, A. G. (2013). Perspectives on the interface of drug delivery and tissue engineering. Advanced drug delivery reviews, 65(1), 89–92.

    Article  CAS  PubMed  Google Scholar 

  48. Mikos, A. G., Herring, S. W., Ochareon, P., Elisseeff, J., Lu, H. H., Kandel, R., Schoen, F. J., Toner, M., Mooney, D., Atala, A., Van Dyke, M. E., Kaplan, D., & Vunjak-Novakovic, G. (2006). Engineering complex tissues. Tissue engineering, 12(12), 3307–3339.

    Article  CAS  PubMed  Google Scholar 

  49. Mountziaris, P. M., & Mikos, A. G. (2008). Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews, 14(2), 179–186.

    Article  CAS  PubMed  Google Scholar 

  50. Naderi, H., Matin, M. M., & Bahrami, A. R. (2011). Critical issues in tissue engineering: Biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications, 26(4), 383–417.

    Article  CAS  PubMed  Google Scholar 

  51. Moroni, L., & Elisseeff, J. H. (2008). Biomaterials engineered for integration. Materials today, 11(5), 44–51.

    Article  CAS  Google Scholar 

  52. Shi, M., Kretlow, J. D., Spicer, P. P., Tabata, Y., Demian, N., Wong, M. E., Kurtis Kasper, F., & Mikos, A. G. (2011). Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. Journal of controlled release, 152(1), 196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spicer, P. P., Kretlow, J. D., Henslee, A. M., Shi, M., Young, S., Demian, N., Jansen, J. A., Wong, M. E., Mikos, A. G., & Kurtis Kasper, F. (2012). In situ formation of porous space maintainers in a composite tissue defect. Journal of Biomedical Materials Research Part A, 100(4), 827–833.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623–633.

    Article  CAS  PubMed  Google Scholar 

  55. Girotti, A., Escalera-Anzola, S., Alonso-Sampedro, I., González-Valdivieso, J., & Arias, F. J. (2020). Aptamer-functionalized natural protein-based polymers as innovative biomaterials. Pharmaceutics, 12(11), 1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Casanova, M. R., Reis, R. L., Martins, A., & Neves, N. M. (2020). Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. Materials Horizons, 7(9), 2258–2275.

    Article  CAS  Google Scholar 

  57. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935), 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature reviews Molecular cell biology, 15(12), 786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huebsch, N., Arany, P. R., Mao, A. S., Shvartsman, D., Ali, O. A., Bencherif, S. A., Rivera-Feliciano, J., & Mooney, D. J. (2010). Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature materials, 9(6), 518–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singer, S. J. (1992). Intercellular communication and cell-cell adhesion. Science, 255(5052), 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  61. Guillame-Gentil, O., Semenov, O., Roca, A. S., Groth, T., Zahn, R., Vörös, J., & Zenobi-Wong, M. (2010). Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Advanced materials, 22(48), 5443–5462.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, T. T., et al. (2015). Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nature materials, 14(3), 352–360.

    Article  CAS  PubMed  Google Scholar 

  63. Guo, K.-T., Scharnweber, D., Schwenzer, B., Ziemer, G., & Wendel, H. P. (2007). The effect of electrochemical functionalization of Ti-alloy surfaces by aptamer-based capture molecules on cell adhesion. Biomaterials, 28(3), 468–474.

    Article  CAS  PubMed  Google Scholar 

  64. Chen, N., Zhang, Z., Soontornworajit, B., Zhou, J., & Wang, Y. (2012). Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials, 33(5), 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Z., Chen, N., Li, S., Battig, M. R., & Wang, Y. (2012). Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. Journal of the American Chemical Society, 134(38), 15716–15719.

    Article  CAS  PubMed  Google Scholar 

  66. Li, W., Wang, J., Ren, J., & Qu, X. (2015). Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. Chemical science, 6(12), 6762–6768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, X., Battig, M. R., Chen, N., Gaddes, E. R., Duncan, K. L., & Wang, Y. (2016). Chimeric aptamer–gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules, 17(3), 778–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frokjaer, S., & Otzen, D. E. (2005). Protein drug stability: A formulation challenge. Nature reviews drug discovery, 4(4), 298–306.

    Article  CAS  PubMed  Google Scholar 

  69. Coyne, J., Zhao, N., Olubode, A., Menon, M., & Wang, Y. (2020). Development of hydrogel-like biomaterials via nanoparticle assembly and solid-hydrogel transformation. Journal of Controlled Release, 318, 185–196.

    Article  CAS  PubMed  Google Scholar 

  70. Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536–5544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ratanavaraporn, J., Damrongsakkul, S., Sanchavanakit, N., Banaprasert, T., & Kanokpanont, S. (2006). Comparison of gelatin and collagen scaffolds for fibroblast cell culture. Journal of Metals, Materials and Minerals, 16(1), 37.

    Google Scholar 

  72. Li, Y.-C.E., & Lee, I.-C. (2020). The current trends of biosensors in tissue engineering. Biosensors, 10(8), 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anwarul Hasan, M., Nurunnabi, M. M., Paul, A., Polini, A., Kuila, T., Hariri, M. A., Lee, Y., & Jaffa, A. A. (2014). Recent advances in application of biosensors in tissue engineering. BioMed Research International. https://doi.org/10.1155/2014/307519

    Article  PubMed  PubMed Central  Google Scholar 

  74. O’Sullivan, C. K. (2002). Aptasensors–the future of biosensing? Analytical and bioanalytical chemistry, 372(1), 44–48.

    Article  CAS  PubMed  Google Scholar 

  75. Walter, J.-G., Heilkenbrinker, A., Austerjost, J., Timur, S., Stahl, F., & Schepe, T. (2012). Aptasensors for small molecule detection. Zeitschrift für Naturforschung B, 67(10), 976–986.

    Article  CAS  Google Scholar 

  76. Famulok, M., & Mayer, G. N. (2011). Aptamer modules as sensors and detectors. Accounts of Chemical Research, 44(12), 1349–1358.

    Article  CAS  PubMed  Google Scholar 

  77. Gu, M. B., & Kim, H.-S. (2014). Biosensors based on aptamers and enzymes. Springer.

    Book  Google Scholar 

  78. Sefah, K., Phillips, J. A., Xiong, X., Meng, L., Van Simaeys, D., Chen, H., Martin, J., & Tan, W. (2009). Nucleic acid aptamers for biosensors and bio-analytical applications. The Analyst, 134(9), 1765–1775.

    Article  CAS  PubMed  Google Scholar 

  79. Han, K., Liang, Z., & Zhou, N. (2010). Design strategies for aptamer-based biosensors. Sensors, 10(5), 4541–4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cho, H., Yeh, E., Sinha, R., Laurence, T., Bearinger, J., & Lee, L. (2012). Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano, 6(9), 7607–7614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, J., Ellis, A. V., Kobus, H., & Voelcker, N. H. (2012). Aptamer sensor for cocaine using minor groove binder based energy transfer. Analytica chimica acta, 719, 76–81.

    Article  CAS  PubMed  Google Scholar 

  82. Giamberardino, A., Labib, M., Hassan, E. M., Tetro, J. A., Springthorpe, S., Sattar, S. A., Berezovski, M. V., & DeRosa, M. C. (2013). Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS ONE, 8(11), e79087.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim, D.-K., Kerman, K., Hiep, H. M., Saito, M., Yamamura, S., Takamura, Y., Kwon, Y.-S., & Tamiya, E. (2008). Label-free optical detection of aptamer–protein interactions using gold-capped oxide nanostructures. Analytical Biochemistry, 379(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  84. Bai, H., Wang, R., Hargis, B., Lu, H., & Li, Y. (2012). A SPR aptasensor for detection of avian influenza virus H5N1. Sensors, 12(9), 12506–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tombelli, S., Minunni, M., Luzi, E., & Mascini, M. (2005). Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 67(2), 135–141.

    Article  CAS  PubMed  Google Scholar 

  86. Ashley, J., & Li, S. F. (2013). An aptamer based surface plasmon resonance biosensor for the detection of bovine catalase in milk. Biosensors and Bioelectronics, 48, 126–131.

    Article  CAS  PubMed  Google Scholar 

  87. Tran, D. T., Knez, K., Janssen, K. P., Pollet, J., Spasic, D., & Lammertyn, J. (2013). Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices. Biosensors and Bioelectronics, 43, 245–251.

    Article  CAS  PubMed  Google Scholar 

  88. O’Donnell, N., Okkelman, I. A., Ruane, S. A., Timashev, P., Gromovykh, T. I., & Dmitriev, R. I. (2018). Hybrid biosensing cellulose-based scaffolds for imaging-assisted tissue engineering. The FASEB Journal, 32, 674.25-674.25.

    Google Scholar 

  89. Shin, S. R., Zhang, Y. S., Kim, D. J., Manbohi, A., Avci, H., Silvestri, A., Aleman, J., Hu, N., Kilic, T., Keung, W., & Righi, M. (2016). Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Analytical chemistry, 88(20), 10019–10027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ahmadyousefi, Y., Malih, S., Mirzaee, Y., & Saidijam, M. (2019). Nucleic acid aptamers in diagnosis of colorectal cancer. Biochimie, 156, 1–11.

    Article  CAS  PubMed  Google Scholar 

  91. Derkus, B., Arslan, Y. E., Bayrac, A. T., Kantarcioglu, I., Emregul, K. C., & Emregul, E. (2016). Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease. Sensors and Actuators B: Chemical, 228, 725–736.

    Article  CAS  Google Scholar 

  92. Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food chemistry, 93(3), 475–484.

    Article  CAS  Google Scholar 

  93. Krenzlin, H., Lorenz, V., Danckwardt, S., Kempski, O., & Alessandri, B. (2016). The importance of thrombin in cerebral injury and disease. International Journal of Molecular Sciences, 17(1), 84.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wolberg, A. S. (2007). Thrombin generation and fibrin clot structure. Blood reviews, 21(3), 131–142.

    Article  CAS  PubMed  Google Scholar 

  95. Derkus, B., Arslan, Y. E., Emregul, K. C., & Emregul, E. (2016). Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta, 158, 100–109.

    Article  CAS  PubMed  Google Scholar 

  96. Wei, B., Zhong, H., Wang, L., Liu, Y., Yuling, X., Zhang, J., Chengzhi, X., He, L., & Wang, H. (2019). Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. International journal of biological macromolecules, 135, 400–406.

    Article  CAS  PubMed  Google Scholar 

  97. Sweet, R. A., Nimgaonkar, V. L., Kamboh, M. I., Lopez, O. L., Zhang, F., & DeKosky, S. T. (1998). Dopamine receptor genetic variation, psychosis, and aggression in Alzheimer disease. Archives of Neurology, 55(10), 1335–1340.

    Article  CAS  PubMed  Google Scholar 

  98. Malapani, C., Brian Rakitin, R., Levy, W. H., Meck, B. D., Dubois, B., & Gibbon, J. (1998). Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. Journal of cognitive neuroscience, 10(3), 316–331.

    Article  CAS  PubMed  Google Scholar 

  99. Kasten, M. J. (1999). Clindamycin, metronidazole, and chloramphenicol. Mayo Clinic Proceedings, 74(8), 825–833.

    Article  CAS  PubMed  Google Scholar 

  100. Pilehvar, S., Mehta, J., Dardenne, F., Robbens, J., Blust, R., & De Wael, K. (2012). Aptasensing of chloramphenicol in the presence of its analogues: Reaching the maximum residue limit. Analytical chemistry, 84(15), 6753–6758.

    Article  CAS  PubMed  Google Scholar 

  101. Orth, M., Shenar, A. K., Scheuer, C., Braun, B. J., Herath, S. C., Holstein, J. H., Histing, T., Xiaohua, Y., Murphy, W. L., Pohlemann, T., Laschke, M. W., & Menger, M. D. (2019). VEGF loaded mineral-coated microparticles improve bone repair and are associated with increased expression of epo and RUNX 2 in murine non-unions. Journal of Orthopaedic Research®, 37(4), 821–831.

    Article  CAS  PubMed  Google Scholar 

  102. Otterbein, L. E., Fan, Z., Koulmanda, M., Thronley, T., & Strom, T. B. (2015). Innate immunity for better or worse govern the allograft response. Current opinion in organ transplantation, 20(1), 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Juhl, O., Zhao, N., Merife, A.-B., Cohen, D., Friedman, M., Zhang, Y., Schwartz, Z., Wang, Y., & Donahue, H. (2019). Aptamer-functionalized fibrin hydrogel improves vascular endothelial growth factor release kinetics and enhances angiogenesis and osteogenesis in critically sized cranial defects. ACS biomaterials science & engineering, 5(11), 6152–6160.

    Article  CAS  Google Scholar 

  104. Wang, X., Song, X., Li, T., Chen, J., Cheng, G., Yang, L., & Cheng,. (2019). Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. The American journal of sports medicine, 47(10), 2316–2326.

    Article  PubMed  Google Scholar 

  105. Sattui, S. E., & Saag, K. G. (2014). Fracture mortality: Associations with epidemiology and osteoporosis treatment. Nature Reviews Endocrinology, 10(10), 592–602.

    Article  PubMed  Google Scholar 

  106. Hendrickx, G., Boudin, E., & Van Hul, W. (2015). A look behind the scenes: The risk and pathogenesis of primary osteoporosis. Nature Reviews Rheumatology, 11(8), 462–474.

    Article  PubMed  Google Scholar 

  107. Luo, Z.-W., Li, F.-X.-Z., Liu, Y.-W., Rao, S.-S., Yin, H., Huang, J., Chen, C.-Y., Yin, H., Zhang, Y., Tan, Y.-J., Yuan, L.-Q., Chen, T.-H., Liu, H.-M., Cao, J., Liu, Z.-Z., Wang, Z.-X., & Xie, H. (2019). Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale, 11(43), 20884–20892.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Y., & Grainger, D. W. (2012). RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Advanced drug delivery reviews, 64(12), 1341–1357.

    Article  CAS  PubMed  Google Scholar 

  109. Liang, C., Guo, B., Heng, W., Shao, N., Li, D., Liu, J., Dang, L., Wang, C., Li, H., Li, S., Lau, W. K., Cao, Y., Yang, Z., Cheng, L., Xiaojuan He, D. W. T. A., Pan, X., Zhang, B.-T., Changwei, L., Zhang, H., … Zhang, G. (2015). Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nature medicine, 21(3), 288–294.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sun, T., Meng, C., Ding, Q., Keda, Y., Zhang, X., Zhang, W., Tian, W., Zhang, Q., Guo, X., Bin, W., & Xiong, Z. (2021). In situ bone regeneration with sequential delivery of aptamer and BMP2 from an ECM-based scaffold fabricated by cryogenic free-form extrusion. Bioactive materials, 6(11), 4163–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, Z., Zhao, T., Gao, C., Cao, F., Li, H., Liao, Z., Liwei, F., Li, P., Chen, W., Sun, Z., Jiang, S., Tian, Z., Tian, G., Zha, K., Tingting Pan, X., Li, X. S., Yuan, Z., Liu, S., & Guo, Q. (2021). 3D-Bioprinted Difunctional Scaffold for In Situ Cartilage Regeneration Based on Aptamer-Directed Cell Recruitment and Growth Factor-Enhanced Cell Chondrogenesis. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.1c01844

    Article  Google Scholar 

  112. Schleicher, M., Wendel, H. P., Fritze, O., & Stock, U. A. (2009). In vivo tissue engineering of heart valves: Evolution of a novel concept. Regenerative medicine, 4(4), 613–619.

    Article  CAS  PubMed  Google Scholar 

  113. Song, P., Ye, D., Zuo, Xi., Li, J., Wang, J., Liu, H., Hwang, M. T., Chao, J., Shao, S., Wang, L., Shi, J., Wang, L., Huang, W., Lal, R., & Fan, C. (2017). DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano letters, 17(9), 5193–5198.

    Article  CAS  PubMed  Google Scholar 

  114. Xing, Y., Guo, J., Chen, Q., Li, F., & Yang, Y. (2016). The application of aptamer functionalized hydrogel to capture circulating tumor cells. International Journal of Clinical and Experimental Medicine, 9(7), 12931–12936.

    CAS  Google Scholar 

  115. Li, S., Chen, N., Zhang, Z., & Wang, Y. (2013). Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials, 34(2), 460–469.

    Article  PubMed  Google Scholar 

  116. Omer, M., Andersen, V. L., Nielsen, J. S., Wengel, J., & Kjems, J. (2020). Improved cancer targeting by multimerizing aptamers on nanoscaffolds. Molecular Therapy-Nucleic Acids, 22, 994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hao, Z., Fan, W., Hao, J., Xin, W., Zeng, G. Q., Zhang, L. J., Nie, S. F., & Wang, X. D. (2016). Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Delivery, 23(3), 864–871.

    Article  CAS  Google Scholar 

  118. Ghasemi, Z., Dinarvand, R., Mottaghitalab, F., Esfandyari-Manesh, M., Sayari, E., & Atyabi, F. (2015). Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydrate polymers, 121, 190–198.

    Article  CAS  PubMed  Google Scholar 

  119. Sae-Lim, S., Soontornworajit, B., & Pichayanoot, P. (2019). Inhibition of colorectal cancer cell proliferation by regulating platelet-derived growth factor B signaling with a DNA aptamer. Asian Pacific Journal of Cancer Prevention: APJCP, 20(2), 487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chunhua, L., Shahzad, M. M. K., Moreno-Smith, M., Lin, Y., Jennings, N. B., Allen, J. K., Landen, C. N., Mangala, L. S., Armaiz-Pena, G. N., Schmandt, R., Nick, A. M., Stone, R. L., Jaffe, R. B., Coleman, R. L., & Sood, A. K. (2010). Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer biology & therapy, 9(3), 176–182.

    Article  Google Scholar 

  121. Dollins, C. M., Nair, S., Boczkowski, D., Lee, J., Layzer, J. M., Gilboa, E., & Sullenger, B. A. (2008). Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chemistry & biology, 15(7), 675–682.

    Article  CAS  Google Scholar 

  122. Quan, J., Wang, Y., Zhang, J., Huang, K., Wang, X., & Jiang, H. (2021). Aptamer Embedded Arch-Cruciform DNA Assemblies on 2-D VS2 Scaffolds for Sensitive Detection of Breast Cancer Cells. Biosensors, 11(10), 378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Frank, H., & Paul, H. (2021). Multivalent Sgc8c-aptamer decorated polymer scaffolds for leukemia targeting. Chemical Communications, 57(22), 2744–2747.

    Article  Google Scholar 

  124. Chen, J., Xu, J., Xiang, J., Wan, T., Deng, H., & Li, D. (2023). A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta, 253, 124056.

    Article  CAS  Google Scholar 

  125. Lei, Y., Qiao, Z., Tang, J., He, X., Shi, H., Ye, X., Yan, L., He, D., & Wang, K. (2018). DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics, 8(15), 4062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shi, P., Wang, X., Davis, B., Coyne, J., Dong, C., Reynolds, J., & Wang, Y. (2020). In Situ Synthesis of an Aptamer-Based Polyvalent Antibody Mimic on the Cell Surface for Enhanced Interactions between Immune and Cancer Cells. Angewandte Chemie International Edition, 59(29), 11892–11897.

    Article  CAS  PubMed  Google Scholar 

  127. Camorani, S., Hill, B. S., Collina, F., Gargiulo, S., Napolitano, M., Cantile, M., Di Bonito, M., Botti, G., Fedele, M., Zannetti, A., & Cerchia, L. (2018). Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 8(18), 5178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, W., Ma, Y., Guo, Z., Xing, R., & Liu, Z. (2020). Efficient screening of glycan-specific aptamers using a glycosylated peptide as a scaffold. Analytical Chemistry, 93(2), 956–963.

    Article  PubMed  Google Scholar 

  129. Li, Y., Zeng, Y., Ji, X., Li, X., & Ren, R. (2012). Cascade signal amplification for sensitive detection of cancer cell based on self-assembly of DNA scaffold and rolling circle amplification. Sensors and Actuators B: Chemical, 171, 361–366.

    Article  Google Scholar 

  130. Xu, Y., Wang, H., Luan, C., Liu, Y., Chen, B., & Zhao, Y. (2018). Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosensors and Bioelectronics, 100, 404–410.

    Article  CAS  PubMed  Google Scholar 

  131. Zhao, N., Battig, M. R., Xu, M., Wang, X., Xiong, N., & Wang, Y. (2017). Development of a Dual-Functional Hydrogel Using RGD and Anti-VEGF Aptamer. Macromolecular bioscience, 17(11), 1700201.

    Article  Google Scholar 

  132. Zhu, Z., Cuichen, W., Liu, H., Zou, Y., Zhang, X., Kang, H., Chaoyong, J. Y., & Tan, W. (2010). An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angewandte Chemie, 122(6), 1070–1074.

    Article  Google Scholar 

  133. Xuan, H., Ren, J., Zhu, Y., Zhao, B., & Ge, L. (2016). Aptamer-functionalized P (NIPAM-AA) hydrogel fabricated one-dimensional photonic crystals (1DPCs) for colorimetric sensing. RSC advances, 6(43), 36827–36833.

    Article  CAS  Google Scholar 

  134. Liu, R., Huang, Y., Ma, Y., Jia, S., Gao, M., Li, J., Zhang, H., Dunming, X., Min, W., Chen, Y., Zhu, Z., & Yang, C. (2015). Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A,". ACS applied materials & interfaces, 7(12), 6982–6990.

    Article  CAS  Google Scholar 

  135. Zhao, M., Wang, P., Guo, Y., Wang, L., Luo, F., Qiu, B., Guo, L., Xiaoou, S., Lin, Z., & Chen, G. (2018). Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout. Talanta, 176, 34–39.

    Article  CAS  PubMed  Google Scholar 

  136. Zhao, W., Schafer, S., Choi, J., Yamanaka, Y. J., Lombardi, M. L., Bose, S., Carlson, A. L., Phillips, J. A., Teo, W., Droujinine, I. A., Cui, C. H., Jain, R. K., Jan Lammerding, J., Love, C., Lin, C. P., Sarkar, D., Karnik, R., & Karp, J. M. (2011). Cell-surface sensors for real-time probing of cellular environments. Nature nanotechnology, 6(8), 524–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, J. M., Kim, B.-S., Lee, H., & Im, G.-I. (2012). In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Molecular Therapy, 20(7), 1434–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, H., Cao, T., Xu, Y., Dong, Y., & Liu, D. (2018). Tuning the mechanical properties of a DNA hydrogel in three phases based on ATP aptamer. International journal of molecular sciences, 19(6), 1633.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors received no financial support for this article.

Author information

Authors and Affiliations

Authors

Contributions

SM was responsible for the overall guidance of this review. AZ, SM, AAA, and RL were responsible for the literature collection and analysis. AZ drafted the manuscript, and AAA critically revised the manuscript for content. RV and GA helped in the first and second revisions of the manuscript. Finally, all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ali Akbar Alizadeh or Mohsen Safaei.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abpeikar, Z., Alizadeh, A.A., Rezakhani, L. et al. Advantages of Material Biofunctionalization Using Nucleic Acid Aptamers in Tissue Engineering and Regenerative Medicine. Mol Biotechnol 65, 1935–1953 (2023). https://doi.org/10.1007/s12033-023-00737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00737-8

Keywords

Navigation