Skip to main content

Advertisement

Log in

Encapsulation of HaCaT Secretome for Enhanced Wound Healing Capacity on Human Dermal Fibroblasts

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In the epidermal and dermal layers of the skin, diverse cell types are reconstituted during the wound healing process. Delays or failures in wound healing are a major issue in skin therapy because they prevent the normal structure and function of wounded tissue from being restored, resulting in ulceration or other skin abnormalities. Human immortalized keratinocytes (HaCAT) cells are a spontaneously immortalized human keratinocyte cell line capable of secreting many bioactive chemicals (a secretome) that stimulate skin cell proliferation, rejuvenation, and regeneration. In this study, the HaCaT secretome was encapsulated with polyesters such as poly (lactic-co-glycolic acid) (PLGA) and cassava starch in an effort to maximize its potential. According to the estimated mechanism of the HaCaT secretome, all treatments were conducted on immortalized dermal fibroblast cell lines, a model of wound healing. Encapsulation of HaCaT secretome and cassava starch enhanced the effectiveness of cell proliferation, migration, and anti-aging. On the other hand, the levels of reactive oxygen species (ROS) were lowered, activating antioxidants in immortalized dermal fibroblast cells. The HaCaT secretome induced in a dose-dependent manner the expression of antioxidant-associated genes, including SOD, CAT, and GPX. Six cytokines, including CCL2 and MCP-1, influenced immunoregulatory and inflammatory processes in cultured HaCAT cells. HaCaT secretome encapsulated in cassava starch can reduce ROS buildup by boosting antioxidant to stimulate wound healing. Hence, the HaCaT secretome may have a new chance in the cosmetics business to develop components for wound prevention and healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Oprea, T. I., Bologa, C. G., Brunak, S., Campbell, A., Gan, G. N., Gaulton, A., Gomez, S. M., Guha, R., Hersey, A., & Holmes, J. (2018). Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery, 17(5), 317–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, D. E. (2018). Biotherapeutics: Challenges and opportunities for predictive toxicology of monoclonal antibodies. International Journal of Molecular Sciences, 19(11), 3685.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., & Wu, H.-C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), 1–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological reviews, 88(2), 557–579.

    Article  CAS  PubMed  Google Scholar 

  5. Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences, 18(9), 1852.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seo, M.-D., Kang, T. J., Lee, C. H., Lee, A.-Y., & Noh, M. (2012). HaCaT keratinocytes and primary epidermal keratinocytes have different transcriptional profiles of cornified envelope-associated genes to T helper cell cytokines. Biomolecules & Therapeutics, 20(2), 171.

    Article  CAS  Google Scholar 

  7. Harding, C., Heuser, J., & Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology, 97(2), 329–339.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, B., Zhang, X., & Li, X. (2014). Exosomes derived from mesenchymal stem cells. International Journal of Molecular Sciences, 15(3), 4142–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daneshi, N., Bahmaie, N., & Esmaeilzadeh, A. (2022). Cell-free treatments: a new generation of targeted therapies for treatment of ischemic heart diseases. Cell Journal (Yakhteh), 24(7), 353.

    Google Scholar 

  10. Damayanti, R. H., Rusdiana, T., & Wathoni, N. (2021). Mesenchymal stem cell secretome for dermatology application: A review. Clinical, Cosmetic and Investigational Dermatology, 14, 1401.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shpichka, A., Butnaru, D., Bezrukov, E. A., Sukhanov, R. B., Atala, A., Burdukovskii, V., Zhang, Y., & Timashev, P. (2019). Skin tissue regeneration for burn injury. Stem Cell Research & Therapy, 10, 1–16.

    Article  Google Scholar 

  12. Damayanti, R. H., Rusdiana, T., & Wathoni, N. (2021). Mesenchymal stem cell secretome for dermatology application: a review. Clinical, Cosmetic and Investigational Dermatology. https://doi.org/10.2147/CCID.S331044

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan, K. X., Chang, T., & Lin, X. (2022). Secretomes as an emerging class of bioactive ingredients for enhanced cosmeceutical applications. Experimental Dermatology, 31(5), 674–688.

    Article  CAS  PubMed  Google Scholar 

  14. Bobadilla, A. V. P., Arévalo, J., Sarró, E., Byrne, H. M., Maini, P. K., Carraro, T., Balocco, S., Meseguer, A., & Alarcón, T. (2019). In vitro cell migration quantification method for scratch assays. Journal of the Royal Society Interface, 16(151), 20180709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, B. (2011). Wang JH-C: Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. Journal of Tissue Viability, 20(4), 108–120.

    Article  PubMed  Google Scholar 

  16. Thapa, R. K., Margolis, D. J., Kiick, K. L., & Sullivan, M. O. (2020). Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model. ACS Applied Bio Materials, 3(6), 3500–3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yallapu, M. M., Gupta, B. K., Jaggi, M., & Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 351(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  18. Reddy, L. H. (2005). Drug delivery to tumours: Recent strategies. Journal of Pharmacy and Pharmacology, 57(10), 1231–1242.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, A., Li, D., Liu, H., Adhikari, B., & Wang, Q. (2016). Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles. International Journal of Biological Macromolecules, 87, 55–61.

    Article  CAS  PubMed  Google Scholar 

  20. Xie, X., Zhang, Y., Zhu, Y., & Lan, Y. (2022). Preparation and drug-loading properties of amphoteric cassava starch nanoparticles. Nanomaterials, 12(4), 598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gensure, R. C., Mäkitie, O., Barclay, C., Chan, C., DePalma, S. R., Bastepe, M., Abuzahra, H., Couper, R., Mundlos, S., & Sillence, D. (2005). A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. The Journal of Clinical Investigation, 115(5), 1250–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, S., Anshita, D., & Ravichandiran, V. (2021). MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology, 101, 107598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korbecki, J., Barczak, K., Gutowska, I., Chlubek, D., & Baranowska-Bosiacka, I. (2022). CXCL1: Gene, promoter, regulation of expression, mRNA stability, regulation of activity in the intercellular space. International Journal of Molecular Sciences, 23(2), 792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iso, Y., Spees, J. L., Serrano, C., Bakondi, B., Pochampally, R., Song, Y.-H., Sobel, B. E., Delafontaine, P., & Prockop, D. J. (2007). Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochemical and Biophysical Research Communications, 354(3), 700–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, L., Lv, R., Yang, X., Cheng, S., Ma, T., & Xu, J. (2016). Hypoxic conditioned medium of placenta-derived mesenchymal stem cells protects against scar formation. Life Sciences, 149, 51–57.

    Article  CAS  PubMed  Google Scholar 

  27. Ahangar, P., Mills, S. J., Smith, L. E., Strudwick, X. L., Ting, A. E., Vaes, B., & Cowin, A. J. (2020). Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Research & Therapy, 11(1), 1–16.

    Article  Google Scholar 

  28. Saheli, M., Bayat, M., Ganji, R., Hendudari, F., Kheirjou, R., Pakzad, M., Najar, B., & Piryaei, A. (2020). Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Archives of Dermatological Research, 312, 325–336.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, Q., Luni, C., & Elvassore, N. (2018). Microfluidics for secretome analysis under enhanced endogenous signaling. Biochemical and Biophysical Research Communications, 497(2), 480–484.

    Article  CAS  PubMed  Google Scholar 

  30. Song, X., Zhao, Y., Hou, S., Xu, F., Zhao, R., He, J., Cai, Z., Li, Y., & Chen, Q. (2008). Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 445–453.

    Article  CAS  PubMed  Google Scholar 

  31. Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139–1153.

    Article  PubMed  Google Scholar 

  32. Ahmad, M., Gani, A., Hassan, I., Huang, Q., & Shabbir, H. (2020). Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 10(1), 1–11.

    Article  Google Scholar 

  33. King, A., Balaji, S., Le, L. D., Crombleholme, T. M., & Keswani, S. G. (2014). Regenerative wound healing: The role of interleukin-10. Advances in Wound Care, 3(4), 315–323.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Promjantuek, W., Chaicharoenaudomrung, N., Phonchai, R., Kunhorm, P., & Noisa, P. (2022). Transgenic immortalization of human dermal fibroblasts mediated through the microRNA/SIRT1 pathway. In Vivo, 36(1), 140–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verhaegen, P. D., Van Zuijlen, P. P., Pennings, N. M., Van Marle, J., Niessen, F. B., Van Der Horst, C. M., & Middelkoop, E. (2009). Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair and Regeneration, 17(5), 649–656.

    Article  PubMed  Google Scholar 

  36. Xue, M., & Jackson, C. J. (2015). Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 4(3), 119–136.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prochasson, P., Delouis, C., & Brison, O. (2002). Transcriptional deregulation of the keratin 18 gene in human colon carcinoma cells results from an altered acetylation mechanism. Nucleic Acids Research, 30(15), 3312–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Butler, C., Sprowls, S., Szalai, G., Arsiwala, T., Saralkar, P., Straight, B., Hatcher, S., Tyree, E., Yost, M., & Kohler, W. J. (2020). Hypomethylating agent azacitidine is effective in treating brain metastasis triple-negative breast cancer through regulation of DNA methylation of keratin 18 gene. Translational Oncology, 13(6), 100775.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akita, S., Akino, K., & Hirano, A. (2013). Basic fibroblast growth factor in scarless wound healing. Advances in wound care, 2(2), 44–49.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhu, S., Liu, M., Bennett, S., Wang, Z., Pfleger, K. D., & Xu, J. (2021). The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. Journal of Cellular Physiology, 236(10), 7211–7222.

    Article  CAS  PubMed  Google Scholar 

  42. Kunhorm, P., Chaicharoenaudomrung, N., & Noisa, P. (2023). Cordycepin-induced keratinocyte secretome promotes skin cell regeneration. In Vivo, 37(2), 574–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kunz, M., & Ibrahim, S. M. (2009). Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators of Inflammation. https://doi.org/10.1155/2009/979258

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Agricultural Research Development Agency (ARDA), Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science, Research, and Innovation Fund (NSRF) (project code 90464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinya Noisa.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heebkaew, N., Promjantuek, W., Chaicharoenaudomrung, N. et al. Encapsulation of HaCaT Secretome for Enhanced Wound Healing Capacity on Human Dermal Fibroblasts. Mol Biotechnol 66, 44–55 (2024). https://doi.org/10.1007/s12033-023-00732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00732-z

Keywords

Navigation