Skip to main content
Log in

Cloning and Functional Characterization of 2-C-methyl-d-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium ‘Sorbonne’)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

2-C-methyl-d-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5′-pyrophosphate cytidine)-2-C-methyl-d-erythritol from 2-C-methyl-d-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid ‘Sorbonne.’ The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Dixon, R. A., & Strack, D. (2003). Phytochemistry meets genome analysis, and beyond. Phytochemistry, 62, 815–816.

    Article  CAS  PubMed  Google Scholar 

  2. Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science, 13, 860157.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Muhlemann, J. K., Klempien, A., & Dudareva, N. (2014). Floral volatiles: From biosynthesis to function. Plant, Cell and Environment, 37, 1936–1949.

    Article  PubMed  Google Scholar 

  4. Sommano, S. R., Chittasupho, C., Ruksiriwanich, W., & Jantrawut, P. (2020). The cannabis terpenes. Molecules, 25(24), 5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cunningham, F. X., Jr., Lafond, T. P., & Gantt, E. (2000). Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. Journal of Bacteriology, 182, 5841–5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dudareva, N., Martin, D., Kish, C. M., Kolosova, N., Gorenstein, N., Faldt, J., Miller, B., & Bohlmann, J. (2003). (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell, 15, 1227–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584, 2965–2973.

    Article  CAS  PubMed  Google Scholar 

  8. Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., & Gershenzon, J. (2005). The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National academy of Sciences of the United States of America, 102, 933–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue, L., He, Z., Bi, X., Xu, W., Wei, T., Wu, S., & Hu, S. (2019). Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics, 20, 383.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, S. M., Kuzuyama, T., Chang, Y. J., Kwon, H. J., & Kim, S. U. (2006). Cloning and functional characterization of 2-C-methyl-d-erythritol 4-phosphate cytidyltransferase (GbMECT) gene from Ginkgo biloba. Phytochemistry, 67, 1435–1441.

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh, M. H., Chang, C. Y., Hsu, S. J., & Chen, J. J. (2008). Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Molecular Biology, 66, 663–673.

    Article  CAS  PubMed  Google Scholar 

  12. Soderlund, C., Descour, A., Kudrna, D., Bomhoff, M., Boyd, L., Currie, J., Angelova, A., Collura, K., Wissotski, M., Ashley, E., Morrow, D., Fernandes, J., Walbot, V., & Yu, Y. (2009). Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genetics, 5, e1000740.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cairney, J., Zheng, L., Cowels, A., Hsiao, J., Zismann, V., Liu, J., Ouyang, S., Thibaud-Nissen, F., Hamilton, J., Childs, K., Pullman, G. S., Zhang, Y., Oh, T., & Buell, C. R. (2006). Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Molecular Biology, 62, 485–501.

    Article  PubMed  Google Scholar 

  14. Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A., & Zenk, M. H. (1999). Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proceedings of the National academy of Sciences of the United States of America, 96, 11758–11763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C. A., Hecht, S., Zenk, M. H., & Bacher, A. (2000). Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana. Proceedings of the National academy of Sciences of the United States of America, 97, 6451–6456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrence, S. D., Cline, K., & Moore, G. A. (1997). Chromoplast development in ripening tomato fruit: Identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. Plant Molecular Biology, 33, 483–492.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, P., Yang, Y., Xiao, C., Liu, Y., Gan, M., Guan, Y., Hao, X., Meng, J., Zhou, S., Chen, X., & Cui, J. (2012). Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria. European Journal of Pharmacology, 694, 45–52.

    Article  CAS  PubMed  Google Scholar 

  18. Antoniadi, I., Skalicky, V., Sun, G., Ma, W., Galbraith, D. W., Novak, O., & Ljung, K. (2022). Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytometry Part A, 101, 725–736.

    Article  CAS  Google Scholar 

  19. Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1, 1559–1582.

    Article  CAS  PubMed  Google Scholar 

  20. Abbas, F., Ke, Y., Zhou, Y., Waseem, M., Yu, Y., Ashraf, U., Li, X., Wang, C., Yue, Y., Yu, R., & Fan, Y. (2020). Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia.’ Gene, 756, 144921.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., & Chua, N. H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1, 641–646.

    Article  CAS  PubMed  Google Scholar 

  22. Ghedira, R., De Buck, S., Nolf, J., & Depicker, A. (2013). The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. Molecular Plant–Microbe Interactions, 26, 823–832.

    Article  CAS  PubMed  Google Scholar 

  23. Hu, Z., Tang, B., Wu, Q., Zheng, J., Leng, P., & Zhang, K. (2017). Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano.’ Frontiers in Plant Science, 8, 1351.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xi, W., Liu, C., Hou, X., & Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. The Plant Cell, 22, 1733–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, S., Pal, S., Shanker, K., Chanotiya, C. S., Gupta, M. M., Dwivedi, U. N., & Shasany, A. K. (2014). Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Physiologia Plantarum, 152, 617–633.

    Article  CAS  PubMed  Google Scholar 

  26. Richard, S. B., Lillo, A. M., Tetzlaff, C. N., Bowman, M. E., Noel, J. P., & Cane, D. E. (2004). Kinetic analysis of Escherichia coli 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids. Biochemistry, 43, 12189–12197.

    Article  CAS  PubMed  Google Scholar 

  27. Lichtenthaler, H. K., Schwender, J., Disch, A., & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Letters, 400, 271–274.

    Article  CAS  PubMed  Google Scholar 

  28. Guirimand, G., Guihur, A., Perello, C., Phillips, M., Mahroug, S., Oudin, A., Duge de Bernonville, T., Besseau, S., Lanoue, A., Giglioli-Guivarc’h, N., Papon, N., St-Pierre, B., Rodriguez-Concepcion, M., Burlat, V., & Courdavault, V. (2020). Cellular and subcellular compartmentation of the 2C-methyl-d-erythritol 4-phosphate pathway in the Madagascar periwinkle. Plants (Basel), 9(4), 462.

    Article  CAS  PubMed  Google Scholar 

  29. Vranova, E., Kopcsayova, D., Kosuth, J., & Colinas, M. (2019). Mutant-based model of two independent pathways for carotenoid-mediated chloroplast biogenesis in Arabidopsis embryos. Frontiers in Plant Science, 10, 1034.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jarvis, P. (2019). Chloroplast research methods: Probing the targeting, localization and interactions of chloroplast proteins. Journal of Visualized Experiments. https://doi.org/10.3791/59935

    Article  PubMed  Google Scholar 

  31. Lois, L. M., Rodriguez-Concepcion, M., Gallego, F., Campos, N., & Boronat, A. (2000). Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. The Plant Journal, 22, 503–513.

    Article  CAS  PubMed  Google Scholar 

  32. Farre-Armengol, G., Filella, I., Llusia, J., & Penuelas, J. (2017). beta-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules. https://doi.org/10.3390/molecules22071148

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fenske, M. P., Hewett Hazelton, K. D., Hempton, A. K., Shim, J. S., Yamamoto, B. M., Riffell, J. A., & Imaizumi, T. (2015). Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proceedings of the National Academy of Sciences of the United States of America, 112, 9775–9780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheng, L., Zang, S., Wang, J., Wei, T., Xu, Y., & Feng, L. (2021). Overexpression of a Rosa rugosa Thunb. NUDX gene enhances biosynthesis of scent volatiles in petunia. PeerJ, 9, e11098.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feng, L., Chen, C., Li, T., Wang, M., Tao, J., Zhao, D., & Sheng, L. (2014). Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.). Plant Physiology and Biochemistry, 75, 80–88.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, T., Sun, M., Guo, Y., Shi, X., Yang, Y., Chen, J., Zheng, T., Han, Y., Bao, F., & Ahmad, S. (2018). Overexpression of LiDXS and LiDXR from lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Frontiers in Plant Science, 9, 909.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jin, Y., Liu, Z., Li, Y., Liu, W., Tao, Y., & Wang, G. (2016). A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis. Science and Reports, 6, 36379.

    Article  CAS  Google Scholar 

  38. Imlay, L. S., Armstrong, C. M., Masters, M. C., Li, T., Price, K. E., Edwards, R. L., Mann, K. M., Li, L. X., Stallings, C. L., Berry, N. G., O’Neill, P. M., & Odom, A. R. (2015). Plasmodium IspD (2-C-methyl-d-erythritol 4-phosphate cytidyltransferase), an essential and druggable antimalarial target. ACS Infectious Diseases, 1, 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghavami, M., Merino, E. F., Yao, Z. K., Elahi, R., Simpson, M. E., Fernandez-Murga, M. L., Butler, J. H., Casasanta, M. A., Krai, P. M., Totrov, M. M., Slade, D. J., Carlier, P. R., & Cassera, M. B. (2018). Biological studies and target engagement of the 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD)-targeting antimalarial agent (1 R,3 S)-MMV008138 and analogs. ACS Infectious Diseases, 4, 549–559.

    Article  CAS  PubMed  Google Scholar 

  40. Lan, X. Z. (2013). Molecular cloning and characterization of the gene encoding 2-C-methyl-d-erythritol 4-phosphate cytidyltransferase from hairy roots of Rauvolfia verticillata. Biologia, 68, 91–98.

    Article  CAS  Google Scholar 

  41. Banerjee, A., Wu, Y., Banerjee, R., Li, Y., Yan, H. G., & Sharkey, T. D. (2013). Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. Journal of Biological Chemistry, 288, 16926–16936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morrone, D., Lowry, L., Determan, M. K., Hershey, D. M., Xu, M. M., & Peters, R. J. (2010). Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Applied Microbiology and Biotechnology, 85, 1893–1906.

    Article  CAS  PubMed  Google Scholar 

  43. Ali, M., Alshehri, D., Alkhaibari, A. M., Elhalem, N. A., & Darwish, D. B. E. (2022). Cloning and characterization of 1,8-cineole synthase (SgCINS) gene from the leaves of Salvia guaranitica plant. Frontiers in Plant Science, 13, 869432.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support received from the Experimental Center in the College of Life Sciences at Northeast Agricultural University.

Funding

This research has not received any funding support or participated in any project for the acquisition of funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Fan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Liu, D., Dai, J. et al. Cloning and Functional Characterization of 2-C-methyl-d-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium ‘Sorbonne’). Mol Biotechnol 66, 56–67 (2024). https://doi.org/10.1007/s12033-023-00729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00729-8

Keywords

Navigation