Skip to main content
Log in

Recent Advances in Overexpression of Functional Recombinant Lipases

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein’s genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Domínguez de María, P. (2021). Biocatalysis, sustainability, and industrial applications: Show me the metrics. Current Opinion Green Sustainable Chemistry, 31, 100514. https://doi.org/10.1016/j.cogsc.2021.100514

    Article  CAS  Google Scholar 

  2. Kuo, C. H., & Shieh, C. J. (2020). Biocatalytic process optimization. Catalysts, 10, 1–5. https://doi.org/10.3390/catal10111303

    Article  CAS  Google Scholar 

  3. van Schie, M. M. C. H., Spöring, J. D., Bocola, M., et al. (2021). Applied biocatalysis beyond just buffers: From aqueous to unconventional media, options and guidelines. Green Chemistry, 23, 3191–3206. https://doi.org/10.1039/d1gc00561h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El-Shemy, N. S., & El-Hawary, N. S. (2015). Basic and Reactive-dyeable polyester fabrics using lipase enzymes. Journal of Chemical Engineering and Process Technology, 07, 1–5. https://doi.org/10.4172/2157-7048.1000271

    Article  CAS  Google Scholar 

  5. Kumar, D., Bhardwaj, R., Jassal, S., et al. (2021). Application of enzymes for an eco-friendly approach to textile processing. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16764-4

    Article  PubMed  Google Scholar 

  6. Kumar, J. A., & Senthil Kumar, M. (2020). A study on improving dyeability of polyester fabric using lipase enzyme. Autex Research Journal, 20, 243–249. https://doi.org/10.2478/aut-2019-0030

    Article  CAS  Google Scholar 

  7. Jawed, A., Singh, G., Kohli, S., et al. (2019). Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany, 120, 25–32. https://doi.org/10.1016/j.sajb.2018.04.004

    Article  CAS  Google Scholar 

  8. Valek, T., Kostelnik, A., Valkova, P., & Pohanka, M. (2019). Indoxyl acetate as a substrate for analysis of lipase activity. International of Journal of Analytics Chemistry. https://doi.org/10.1155/2019/8538340

    Article  Google Scholar 

  9. Mehta, A., Guleria, S., Sharma, R., & Gupta, R. (2021). The lipases and their applications with emphasis on food industry. Elsevier Inc.

    Book  Google Scholar 

  10. Li, S., Luo, F., Chattha, S. A., et al. (2020). Surfactant-free beamhouse technology of leather manufacturing: Removing constraints for the breakdown of natural fats catalyzed by lipase. Journal of Clean Production, 261, 121187. https://doi.org/10.1016/j.jclepro.2020.121187

    Article  CAS  Google Scholar 

  11. Moujehed, E., Zarai, Z., Khemir, H., et al. (2022). Cleaner degreasing of sheepskins by the Yarrowia lipolytica LIP2 lipase as a chemical-free alternative in the leather industry. Colloids Surfaces B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2021.112292

    Article  PubMed  Google Scholar 

  12. Gurkok, S., & Ozdal, M. (2021). Purification and characterization of a novel extracellular, alkaline, thermoactive, and detergent-compatible lipase from Aeromonas caviae LipT51 for application in detergent industry. Protein Expression and Purification, 180, 105819. https://doi.org/10.1016/j.pep.2021.105819

    Article  CAS  PubMed  Google Scholar 

  13. Phukon, L. C., Chourasia, R., Kumari, M., et al. (2020). Production and characterisation of lipase for application in detergent industry from a novel Pseudomonas helmanticensis HS6. Bioresource Technology, 309, 123352. https://doi.org/10.1016/j.biortech.2020.123352

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J., Liu, S., Gao, Y., et al. (2021). Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. International Journal of Biological Macromolecules, 176, 126–136. https://doi.org/10.1016/j.ijbiomac.2021.01.214

    Article  CAS  PubMed  Google Scholar 

  15. Hama, S., Noda, H., & Kondo, A. (2018). How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Current Opinion in Biotechnology, 50, 57–64. https://doi.org/10.1016/j.copbio.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  16. López-Fernández, J., DolorsBenaiges, M., & Valero, F. (2021). Second- and third-generation biodiesel production with immobilised recombinant Rhizopus oryzae lipase: Influence of the support, substrate acidity and bioprocess scale-up. Bioresource Technology. https://doi.org/10.1016/j.biortech.2021.125233

    Article  PubMed  Google Scholar 

  17. Sena, R. O., Carneiro, C., Moura, M. V. H., et al. (2021). Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules, 189, 734–743. https://doi.org/10.1016/j.ijbiomac.2021.08.173

    Article  CAS  PubMed  Google Scholar 

  18. Cipolatti, E. P., Valério, A., Henriques, R. O., et al. (2020). Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries. International Journal of Biological Macromolecules, 165, 2957–2963. https://doi.org/10.1016/j.ijbiomac.2020.10.179

    Article  CAS  PubMed  Google Scholar 

  19. Dulęba, J., Czirson, K., Siódmiak, T., & Marszałł, M. P. (2019). Lipase B from Candida antarctica: The wide applicable biocatalyst in obtaining pharmaceutical compounds. Medical Research Journal, 4, 174–177. https://doi.org/10.5603/mrj.a2019.0030

    Article  Google Scholar 

  20. Chandra, P., Enespa, S. R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: A comprehensive review. BioMed Central, 19, 1–10.

    Google Scholar 

  21. Melani, N. B., Tambourgi, E. B., Silveira, E., et al. (2019). Lipases: From production to applications lipases: From production to applications. Separation and Purification Reviews, 00, 1–16. https://doi.org/10.1080/15422119.2018.1564328

    Article  CAS  Google Scholar 

  22. Correddu, D., de Montaño López, J., Vadakkedath, P. G., et al. (2019). An improved method for the heterologous production of soluble human ribosomal proteins in Escherichia coli. Science and Reports, 9, 1–8. https://doi.org/10.1038/s41598-019-45323-8

    Article  CAS  Google Scholar 

  23. Francis, D. M., & Page, R. (2010). Strategies to optimize protein expression in E. coli. Current Protocols in Protein Science, 1, 1–29. https://doi.org/10.1002/0471140864.ps0524s61

    Article  Google Scholar 

  24. Sharma, A., Gupta, G., Ahmad, T., et al. (2021). Enzyme engineering: Current trends and future perspectives. Food Review International, 37, 121–154. https://doi.org/10.1080/87559129.2019.1695835

    Article  CAS  Google Scholar 

  25. Peternel, Š, & Komel, R. (2010). Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microbial Cell Factories, 9, 1–16. https://doi.org/10.1186/1475-2859-9-66

    Article  CAS  Google Scholar 

  26. Rodríguez-Carmona, E., Cano-Garrido, O., Seras-Franzoso, J., et al. (2010). Isolation of cell-free bacterial inclusion bodies. Microbial Cell Factories, 9, 1–9. https://doi.org/10.1186/1475-2859-9-71

    Article  CAS  Google Scholar 

  27. Slouka, C., Kopp, J., Hutwimmer, S., et al. (2018). Custom made inclusion bodies: Impact of classical process parameters and physiological parameters on inclusion body quality attributes. Microbial Cell Factories, 17, 1–15. https://doi.org/10.1186/s12934-018-0997-5

    Article  CAS  Google Scholar 

  28. Singhvi, P., Saneja, A., Srichandan, S., & Panda, A. K. (2020). Bacterial inclusion bodies: A treasure trove of bioactive proteins. Trends in Biotechnology, 38, 474–486. https://doi.org/10.1016/j.tibtech.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  29. Papadopoulos, A., Busch, M., Reiners, J., & Hachani, E. (2022). The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. BioRxiv, 9, 1026724.

    CAS  Google Scholar 

  30. Pulido, I. Y., Prieto, E., Pieffet, G. P., et al. (2020). Functional heterologous expression of mature lipase lipA from Pseudomonas aeruginosa PSA01 in Escherichia coli shuffle and BL21 (DE3): Effect of the expression host on thermal stability and solvent tolerance of the enzyme produced. International Journal of Molecular Sciences, 21, 1–19. https://doi.org/10.3390/ijms21113925

    Article  CAS  Google Scholar 

  31. Raschmanová, H., Weninger, A., Knejzlík, Z., et al. (2021). Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins. Applied Microbiology and Biotechnology, 105, 4397–4414. https://doi.org/10.1007/s00253-021-11336-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J., Tian, M., Chen, X., et al. (2021). Co-expression of a thermally stable and methanol-resistant lipase and its chaperone from Burkholderia cepacia G63 in Escherichia coli. Applied Biochemistry and Biotechnology, 193, 717–729. https://doi.org/10.1007/s12010-020-03453-0

    Article  CAS  PubMed  Google Scholar 

  33. Viegas, A., Dollinger, P., Verma, N., et al. (2020). Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation. Science and Reports, 10, 1–15. https://doi.org/10.1038/s41598-020-60093-4

    Article  CAS  Google Scholar 

  34. Lagzian, M., Shahraki, A., Besharatian, M., & Asoodeh, A. (2018). A thermostable alkaliphilic protein-disulfide isomerase from Bacillus subtilis DR8806: Cloning, expression, biochemical characterization and molecular dynamics simulation. International Journal of Biological Macromolecules, 107, 703–712. https://doi.org/10.1016/j.ijbiomac.2017.09.033

    Article  CAS  PubMed  Google Scholar 

  35. Prattipati, M., Ramakrishnan, K., & Sankaranarayanan, M. (2020). Pichia pastoris protein disulfide isomerase (PDI1) promoter for heterologous protein production and its sequence characterization. Enzyme and Microbial Technology, 140, 109633. https://doi.org/10.1016/j.enzmictec.2020.109633

    Article  CAS  PubMed  Google Scholar 

  36. Tran, D. T. M., Phan, T. T. P., Doan, T. T. N., et al. (2020). Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnol Reports, 28, e00540. https://doi.org/10.1016/j.btre.2020.e00540

    Article  Google Scholar 

  37. Elemosho, R., Suwanto, A., & Thenawidjaja, M. (2021). Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. Electronic Journal of Biotechnology, 53, 71–79. https://doi.org/10.1016/j.ejbt.2021.07.003

    Article  CAS  Google Scholar 

  38. Eddehech, A., Rahier, R., Smichi, N., et al. (2021). Heterologous expression, kinetic characterization and molecular modeling of a new sn-1,3-regioselective triacylglycerol lipase from Serratia sp. W3. Process Biochemistry, 103, 87–97. https://doi.org/10.1016/j.procbio.2021.02.009

    Article  CAS  Google Scholar 

  39. Amann, E., Brosius, J., & Ptashne, M. (1983). Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene, 25, 167–178. https://doi.org/10.1016/0378-1119(83)90222-6

    Article  CAS  PubMed  Google Scholar 

  40. Din, M. H. M., Nair, A., Masomian, M., et al. (2021). Heterologous expression and characterization of plant lipase lip2 from Elaeis guineensis jacq. Oil palm mesocarp in Escherichia coli. Catalysts, 11, 1–20. https://doi.org/10.3390/catal11020244

    Article  CAS  Google Scholar 

  41. Kaur, G., Singh, A., Sharma, R., et al. (2016). Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech, 6, 1–10. https://doi.org/10.1007/s13205-016-0369-y

    Article  PubMed  Google Scholar 

  42. Zhao, J., Ma, M., Yan, X., et al. (2022). Expression and characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for application in enhancing fatty acids flavor release for low-fat cheeses. Food Chemistry, 368, 130868. https://doi.org/10.1016/j.foodchem.2021.130868

    Article  CAS  PubMed  Google Scholar 

  43. Hamdan, S. H., Maiangwa, J., Nezhad, N. G., et al. (2023). Knotting terminal ends of mutant T1 lipase with disulfide bond improved structure rigidity and stability. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-023-12396-5

    Article  PubMed  Google Scholar 

  44. Yang, W., Cao, H., Xu, L., et al. (2015). A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnology, 15, 1–15. https://doi.org/10.1186/s12896-015-0214-0

    Article  CAS  Google Scholar 

  45. Zhang, Z., Wang, D., & Xu, Y. (2019). Soluble expression of mature Rhizopus chinensis lipase in Escherichia coli and enhancement of its ester synthesis activity. Protein Expression and Purification, 163, 105443. https://doi.org/10.1016/j.pep.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  46. Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules, 106, 803–822. https://doi.org/10.1016/j.ijbiomac.2017.08.080

    Article  CAS  PubMed  Google Scholar 

  47. Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8 system. Frontiers in Microbiology, 5, 1–20. https://doi.org/10.3389/fmicb.2014.00063

    Article  CAS  Google Scholar 

  48. Soleymani, B., Barzegari, E., Mansouri, K., et al. (2020). Heterologous expression, purification, and refolding of SRY protein: Role of l-arginine as analyzed by simulation and practical study. Molecular Biology Reports, 47, 5943–5951. https://doi.org/10.1007/s11033-020-05667-1

    Article  CAS  PubMed  Google Scholar 

  49. Su, E., Xu, J., & You, P. (2014). Functional expression of Serratia marcescens H30 lipase in Escherichia coli for efficient kinetic resolution of racemic alcohols in organic solvents. Journal of Molecular Catalysis B, 106, 11–16. https://doi.org/10.1016/j.molcatb.2014.04.012

    Article  CAS  Google Scholar 

  50. Karbalaei, M., Rezaee, S. A., & Farsiani, H. (2020). Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 235, 5867–5881. https://doi.org/10.1002/jcp.29583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jallouli, R., Parsiegla, G., Carrière, F., et al. (2017). Efficient heterologous expression of Fusarium solani lipase, FSL2, in Pichia pastoris, functional characterization of the recombinant enzyme and molecular modeling. International Journal of Biological Macromolecules, 94, 61–71. https://doi.org/10.1016/j.ijbiomac.2016.09.030

    Article  CAS  PubMed  Google Scholar 

  52. Kurjan, J., & Herskowitz, I. (1982). Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell, 30, 933–943. https://doi.org/10.1016/0092-8674(82)90298-7

    Article  CAS  PubMed  Google Scholar 

  53. Lin-Cereghino, G. P., Stark, C. M., Kim, D., et al. (2013). The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene, 519, 311–317. https://doi.org/10.1016/j.gene.2013.01.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, J., Wang, X., Shi, L., et al. (2017). Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Science and Reports, 7, 1–12. https://doi.org/10.1038/srep41850

    Article  CAS  Google Scholar 

  55. Wongwatanapaiboon, J., Klinbunga, S., Ruangchainikom, C., et al. (2016). Cloning, expression, and characterization of Aureobasidium melanogenum lipase in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 80, 2231–2240. https://doi.org/10.1080/09168451.2016.1206809

    Article  CAS  PubMed  Google Scholar 

  56. Schey, K. L., Luther, J. M., & Rose, K. L. (2016). Dynamical structures of Hsp70 and Hsp70–Hsp40 complexes. Structure, 24, 1–21. https://doi.org/10.1016/j.str.2016.05.011.Dynamical

    Article  Google Scholar 

  57. Cry, D. M. (1995). Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Letters, 359, 129–132. https://doi.org/10.1016/0014-5793(95)00024-4

    Article  Google Scholar 

  58. Sharma, D., & Masison, D. C. (2011). Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p. Proceeding of National Academy of Science U S A, 108, 13665–13670. https://doi.org/10.1073/pnas.1107421108

    Article  Google Scholar 

  59. Hsu, C. L., Prasad, R., Blackman, C., & Ng, D. T. W. (2012). Endoplasmic reticulum stress regulation of the Kar2p/BiP chaperone alleviates proteotoxicity via dual degradation pathways. Molecular Biology of the Cell, 23, 630–641. https://doi.org/10.1091/mbc.E11-04-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan, F. I., Lan, D., Durrani, R., et al. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontier Bioengineer Biotechnology, 5, 1–13. https://doi.org/10.3389/fbioe.2017.00016

    Article  Google Scholar 

  61. Samuel, P., Prasanna Vadhana, A. K., Kamatchi, R., et al. (2013). Effect of molecular chaperones on the expression of Candida antarctica lipase B in Pichia pastoris. Microbiological Research, 168, 615–620. https://doi.org/10.1016/j.micres.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  62. Wu, X., You, P., Su, E., et al. (2012). In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnology. https://doi.org/10.1186/1472-6750-12-58

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang, J., Zhao, Q., Chen, L., et al. (2020). Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress. Bioengineered, 11, 375–385. https://doi.org/10.1080/21655979.2020.1738127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lan, D., Qu, M., Yang, B., & Wang, Y. (2016). Enhancing production of lipase MAS1 frommarine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Electronic Journal of Biotechnology, 22, 62–67. https://doi.org/10.1016/j.ejbt.2016.06.003

    Article  Google Scholar 

  65. Sha, C., Yu, X. W., Lin, N. X., et al. (2013). Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase. Enyzme and Microbial Technology, 53, 438–443. https://doi.org/10.1016/j.enzmictec.2013.09.009

    Article  CAS  Google Scholar 

  66. Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., et al. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99–120. https://doi.org/10.1016/j.procbio.2018.09.003

    Article  CAS  Google Scholar 

  67. Verma, N., Dollinger, P., Kovacic, F., et al. (2020). The membrane-integrated steric chaperone lif facilitates active site opening of Pseudomonas aeruginosa lipase A. Journal of Computational Chemistry, 41, 500–512. https://doi.org/10.1002/jcc.26085

    Article  CAS  PubMed  Google Scholar 

  68. Putra, L., Natadiputri, G. H., Meryandini, A., & Suwanto, A. (2019). Isolation, cloning and co-expression of lipase and foldase genes of Burkholderia territorii GP3 from mount papandayan soil. Journal of Microbiology and Biotechnology, 29, 944–951. https://doi.org/10.4014/jmb.1812.12013

    Article  CAS  PubMed  Google Scholar 

  69. Alnoch, R. C., Stefanello, A. A., Paula Martini, V., et al. (2018). Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. International Journal of Biological Macromolecules, 116, 1222–1231. https://doi.org/10.1016/j.ijbiomac.2018.05.086

    Article  CAS  PubMed  Google Scholar 

  70. Khan, H. A., & Mutus, B. (2014). Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Frontiers in Chemistry, 2, 1–9. https://doi.org/10.3389/fchem.2014.00070

    Article  CAS  Google Scholar 

  71. Contesini, F. J., Davanço, M. G., Borin, G. P., et al. (2020). Advances in recombinant lipases: Production, engineering, immobilization and application in the pharmaceutical industry. Catalysts, 10, 1–33. https://doi.org/10.3390/catal10091032

    Article  CAS  Google Scholar 

  72. Parakh, S., & Atkin, J. D. (2015). Novel roles for protein disulphide isomerase in disease states: A double edged sword? Frontier Cell Development of Biology, 3, 1–11. https://doi.org/10.3389/fcell.2015.00030

    Article  Google Scholar 

  73. Bhatwa, A., Wang, W., Hassan, Y. I., et al. (2021). Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontier of Bioengineering Biotechnology. https://doi.org/10.3389/fbioe.2021.630551

    Article  Google Scholar 

  74. De Marco, A., Ferrer-Miralles, N., Garcia-Fruitós, E., et al. (2019). Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiology Reviews, 43, 53–72. https://doi.org/10.1093/femsre/fuy038

    Article  CAS  PubMed  Google Scholar 

  75. Belková, M., Köszagová, R., & Nahálka, J. (2022). Active inclusion bodies: The unexpected journey. Journal of Microbiology, Biotechnology and Food Sciences, 12, 1–7. https://doi.org/10.55251/jmbfs.5951

    Article  CAS  Google Scholar 

  76. Gu, Z., Weidenhaupt, M., Ivanova, N., et al. (2002). Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Protein Expression and Purification, 25, 174–179. https://doi.org/10.1006/prep.2002.1624

    Article  CAS  PubMed  Google Scholar 

  77. Tsumoto, K., Ejima, D., Kumagai, I., & Arakawa, T. (2003). Practical considerations in refolding proteins from inclusion bodies. Protein Expression and Purification, 28, 1–8. https://doi.org/10.1016/S1046-5928(02)00641-1

    Article  CAS  PubMed  Google Scholar 

  78. Vallejo, L. F., & Rinas, U. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3, 1–12. https://doi.org/10.1186/1475-2859-3-11

    Article  CAS  Google Scholar 

  79. Yamaguchi, H., & Miyazaki, M. (2014). Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 4, 235–251. https://doi.org/10.3390/biom4010235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Y., Van Oosterwijk, N., Ali, A. M., et al. (2017). A systematic protein refolding screen method using the DGR approach reveals that time and secondary TSA are essential variables. Science and Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-09687-z

    Article  CAS  Google Scholar 

  81. Yin, Y. C., Li, H. Q., & Sen, Wu. X. (2020). Refolding with simultaneous purification of recombinant Serratia marcescens lipase by one-step ultrasonication process. Applied Biochemistry and Biotechnology, 191, 1670–1683. https://doi.org/10.1007/s12010-019-03172-1

    Article  CAS  PubMed  Google Scholar 

  82. Jalil, F. N. F. A. A., Rahman, R. N. Z. R. A., Salleh, A. B., & Ali, M. S. M. (2018). Optimization and in silico analysis of a cold-adapted lipase from an antarctic Pseudomonas sp. Strain ams8 reaction in triton x–100 reverse micelles. Catalysts. https://doi.org/10.3390/catal8070289

    Article  Google Scholar 

  83. Yuan, X., Liu, Y., Cao, F., et al. (2020). Immobilization of lipase onto metal–organic frameworks for enantioselective hydrolysis and transesterification. AIChE Journal. https://doi.org/10.1002/aic.16292

    Article  Google Scholar 

  84. Shu, Z., Lin, H., Shi, S., et al. (2016). Cell-bound lipases from Burkholderia sp. ZYB002: Gene sequence analysis, expression, enzymatic characterization, and 3D structural model. BMC Biotechnology, 1, 1–13. https://doi.org/10.1186/s12896-016-0269-6

    Article  CAS  Google Scholar 

  85. Rathore, A. S., Bade, P., Joshi, V., et al. (2013). Refolding of biotech therapeutic proteins expressed in bacteria: Review. Journal of Chemical Technology and Biotechnology, 88, 1794–1806. https://doi.org/10.1002/jctb.4152

    Article  CAS  Google Scholar 

  86. Clark, E. D. B. (2001). Protein refolding for industrial processes. Current Opinion in Biotechnology, 12, 202–207. https://doi.org/10.1016/S0958-1669(00)00200-7

    Article  CAS  PubMed  Google Scholar 

  87. Kawaguchi, N., Date, K., Suzuki, Y., et al. (2018). A novel protocol for the preparation of active recombinant human pancreatic lipase from Escherichia coli. Journal of Biochemistry, 164, 407–414. https://doi.org/10.1093/jb/mvy067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Umetsu, M., Tsumoto, K., Hara, M., et al. (2003). How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system: Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. Journal of Biological Chemistry, 278, 8979–8987. https://doi.org/10.1074/jbc.M212247200

    Article  CAS  PubMed  Google Scholar 

  89. Ho, J. G. S. (2003). The likelihood of aggregation during protein renaturation can be assessed using the second virial coefficient. Protein Science, 12, 708–716. https://doi.org/10.1110/ps.0233703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, W., Cellmer, T., Keerl, D., et al. (2005). Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements. Biotechnology and Bioengineering, 90, 482–490. https://doi.org/10.1002/bit.20442

    Article  CAS  PubMed  Google Scholar 

  91. Ye, X., Yu, D., Wu, Y., et al. (2019). An efficient large-scale refolding technique for recovering biologically active recombinant human FGF-21 from inclusion bodies. International Journal of Biological Macromolecules, 135, 362–372. https://doi.org/10.1016/j.ijbiomac.2019.05.167

    Article  CAS  PubMed  Google Scholar 

  92. Moghadam, M., Ganji, A., Varasteh, A., et al. (2015). Refolding process of cysteine-rich proteins: Chitinase as a model. Reports of Biochemistry and Molecular Biology, 4, 19–24.

    PubMed  PubMed Central  Google Scholar 

  93. Shao, H., Hu, X., Sun, L., & Zhou, W. (2019). Gene cloning, expression in E. coli, and in vitro refolding of a lipase from Proteus sp. NH 2–2 and its application for biodiesel production. Biotechnology Letters, 41, 159–169. https://doi.org/10.1007/s10529-018-2625-1

    Article  CAS  PubMed  Google Scholar 

  94. Rozi, M. F. A. M., Rahman, R. N. Z. R. A., Leow, A. T. C., & Ali, M. S. M. (2022). Ancestral sequence reconstruction of ancient lipase from family I3 bacterial lipolytic enzymes. Molecular Phylogenetics and Evolution, 168, 107381. https://doi.org/10.1016/j.ympev.2021.107381

    Article  CAS  PubMed  Google Scholar 

  95. Buscajoni, L., Martinetz, M. C., Berkemeyer, M., & Brocard, C. (2022). Refolding in the modern biopharmaceutical industry. Biotechnology Advance. https://doi.org/10.1016/j.biotechadv.2022.108050

    Article  Google Scholar 

  96. Lanckriet, H., & Middelberg, A. P. J. (2004). Continuous chromatographic protein refolding. Journal of Chromatography A, 1022, 103–113. https://doi.org/10.1016/j.chroma.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  97. Schlegl, R., Iberer, G., Machold, C., et al. (2003). Continuous matrix-assisted refolding of proteins. Journal of Chromatography A, 1009, 119–132. https://doi.org/10.1016/S0021-9673(03)00432-1

    Article  CAS  PubMed  Google Scholar 

  98. Kweon, D. H., Lee, D. H., Han, N. S., & Seo, J. H. (2004). Solid-phase refolding of cyclodextrin glycosyltransferase adsorbed on cation-exchange resin. Biotechnology Progress, 20, 277–283. https://doi.org/10.1021/bp0341895

    Article  CAS  PubMed  Google Scholar 

  99. Li, M., Zhang, G., & Su, Z. (2002). Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. Journal of Chromatography A, 959, 113–120. https://doi.org/10.1016/S0021-9673(02)00462-4

    Article  CAS  PubMed  Google Scholar 

  100. Akbari, N., Khajeh, K., Rezaie, S., et al. (2010). High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expression and Purification, 70, 75–80. https://doi.org/10.1016/j.pep.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  101. Glynou, K., Ioannou, P. C., & Christopoulos, T. K. (2003). One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expression and Purification, 27, 384–390. https://doi.org/10.1016/S1046-5928(02)00614-9

    Article  CAS  PubMed  Google Scholar 

  102. Yin, S. M., Zheng, Y., & Tien, P. (2003). On-column purification and refolding of recombinant bovine prion protein: Using its octarepeat sequences as a natural affinity tag. Protein Expression and Purification, 32, 104–109. https://doi.org/10.1016/S1046-5928(03)00195-5

    Article  CAS  PubMed  Google Scholar 

  103. Fausnaugh, J. L., Pfannkoch, E., Gupta, S., & Regnier, F. E. (1984). High-performance hydrophobic interaction chromatography of proteins. Analytical Biochemistry, 137, 464–472. https://doi.org/10.1016/0003-2697(84)90114-3

    Article  CAS  PubMed  Google Scholar 

  104. Singh, A., Upadhyay, V., Upadhyay, A. K., et al. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14, 1–10. https://doi.org/10.1186/s12934-015-0222-8

    Article  CAS  Google Scholar 

  105. Jungbauer, A., Kaar, W., & Schlegl, R. (2004). Folding and refolding of proteins in chromatographic beds. Current Opinion in Biotechnology, 15, 487–494. https://doi.org/10.1016/j.copbio.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  106. Tan, C. H., Show, P. L., Ooi, C. W., et al. (2015). Novel lipase purification methods: A review of the latest developments. Biotechnology Journal, 10, 31–44. https://doi.org/10.1002/biot.201400301

    Article  CAS  PubMed  Google Scholar 

  107. Thomson, C. A., Olson, M., Jackson, L. M., & Schrader, J. W. (2012). A simplified method for the efficient refolding and purification of recombinant human GM-CSF. PLoS ONE, 7, 1–6. https://doi.org/10.1371/journal.pone.0049891

    Article  CAS  Google Scholar 

  108. Park, A. R., Jang, S. W., Kim, J. S., et al. (2018). Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E. coli. PLoS ONE, 13, 1–16. https://doi.org/10.1371/journal.pone.0201060

    Article  Google Scholar 

  109. He, C., & Ohnishi, K. (2017). Efficient renaturation of inclusion body proteins denatured by SDS. Biochemical and Biophysical Research Communications, 490, 1250–1253. https://doi.org/10.1016/j.bbrc.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  110. Di Bartolo, N., Compton, E. L. R., Warne, T., et al. (2016). Complete reversible refolding of a G-protein coupled receptor on a solid support. PLoS ONE, 11, 1–16. https://doi.org/10.1371/journal.pone.0151582

    Article  CAS  Google Scholar 

  111. Yang, Z., Zhang, L., Zhang, Y., et al. (2011). Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS ONE, 6, 1–8. https://doi.org/10.1371/journal.pone.0022981

    Article  CAS  Google Scholar 

  112. Karakaş, F., & Arslanoğlu, A. (2020). Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I.3 lipase from Pseudomonas fluorescence KE38. Science and Reports, 10, 1–13. https://doi.org/10.1038/s41598-020-79199-w

    Article  CAS  Google Scholar 

  113. Siew, Y. Y., & Zhang, W. (2021). Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. Bioresource Bioprocess. https://doi.org/10.1186/s40643-021-00419-w

    Article  Google Scholar 

  114. Singhvi, P., Saneja, A., Ahuja, R., & Panda, A. K. (2021). Solubilization and refolding of variety of inclusion body proteins using a novel formulation. International Journal of Biological Macromolecules, 193, 2352–2364. https://doi.org/10.1016/j.ijbiomac.2021.11.068

    Article  CAS  PubMed  Google Scholar 

  115. Singh, S. M., & Panda, A. K. (2005). Solubihzation and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering, 99, 303–310. https://doi.org/10.1263/jbb.99.303

    Article  CAS  PubMed  Google Scholar 

  116. Brien, E. P. O., Dima, R. I., Brooks, B., & Thirumalai, D. (2007). Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism (pp. 7346–7353). Springer.

    Google Scholar 

Download references

Funding

This work has received funding from Ministry of Higher Education (MOHE) under Fundamental Research Grant Scheme (FRGS/1/2019/STG05/UPM/02/15).

Author information

Authors and Affiliations

Authors

Contributions

FLA, NGN and TCL conceived, designed and wrote the manuscript. YMN, MSMA and CB improved the quality of manuscript by compiling information in the form of tables and figures. All authors read and approved the manuscript.

Corresponding author

Correspondence to Thean Chor Leow.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alias, F.L., Nezhad, N.G., Normi, Y.M. et al. Recent Advances in Overexpression of Functional Recombinant Lipases. Mol Biotechnol 65, 1737–1749 (2023). https://doi.org/10.1007/s12033-023-00725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00725-y

Keywords

Navigation