Skip to main content

Advertisement

Log in

Murine Cytomegalovirus Infection Induced miR-1929-3p Down-Regulation Promotes the Proliferation and Apoptosis of Vascular Smooth Muscle Cells in Mice by Targeting Endothelin A Receptor and Downstream NLRP3 Activation Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Our previous study demonstrated in vivo that mouse cytomegalovirus (MCMV) infection promoted vascular remodeling after downregulation of miR-1929-3p. This study aimed to investigate the role of miR-1929-3p/ETAR/NLRP3 pathway in mouse vascular smooth muscle cells (MOVAS) after MCMV infection. First, PCR was used to detect the success of the infection. Second, MOVAS were transfected with the miR-1929-3p mimic, inhibitor, and ETAR overexpressed adenovirus vector. Cell proliferation was detected using EdU, whereas apoptosis was detected using flow cytometry. The expression of miR-1929-3p and ETAR were detected using qRT-PCR. Western blot detected proteins of cell proliferation, apoptosis, and the NLRP3 inflammasome. Interleukin-1β and interleukin-18 were determined using ELISA. The results revealed that after 48 h, MCMV infection promoted the proliferation of MOVAS when the MOI was 0.01. MCMV infection increased ETAR by downregulating miR-1929-3p. The miR-1929-3p mimic reversed the proliferation and apoptosis, whereas the miR-1929-3p inhibitor promoted this effect. ETAR overexpression further promoted MCMV infection by downregulating miR-1929-3p-mediated proliferation and apoptosis. MCMV infection mediates the downregulation of miR-1929-3p and the upregulation of ETAR, which activates NLRP3 inflammasome. In conclusion, MCMV infection promoted the proliferation of MOVAS, possibly by downregulating miR-1929-3p, promoting the upregulation of the target gene ETAR and activating NLRP3 inflammasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MCMV:

Mouse cytomegalovirus

MOVAS:

Mouse vascular smooth muscle cells

VSMCs:

Vascular smooth muscle cells

miRNA:

MicroRNA

ETAR:

Endothelin receptor type A

References

  1. Zahedmehr, A.(2018). Chapter 17-Hypertension. Practical Cardiology. St. Louis, Missouri: Eds. 291–302

  2. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews., 84, 767–801.

    Article  CAS  PubMed  Google Scholar 

  3. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z., & Michel, J.-B. (2012). The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovascular Research., 95, 194–204.

    Article  CAS  PubMed  Google Scholar 

  4. Feihl, F., Liaudet, L., Levy, B. I., & Waeber, B. (2008). Hypertension and microvascular remodelling. Cardiovascular Research, 78, 274–285.

    Article  CAS  PubMed  Google Scholar 

  5. Landolfo, S., Gariglio, M., Gribaudo, G., & Lembo, D. (2003). The human cytomegalovirus. Pharmacology & Therapeutics, 98, 269–297.

    Article  CAS  Google Scholar 

  6. Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141, 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  7. Stark, T. J., Arnold, J. D., Spector, D. H., & Yeo, G. W. (2012). High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. Journal of Virology, 86, 226–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhuruvasan, K., Sivasubramanian, G., & Pellett, P. E. (2011). Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Research, 157, 180–192.

    Article  CAS  PubMed  Google Scholar 

  9. Ng, K. R., Li, J. Y. Z., & Gleadle, J. M. (2015). Human cytomegalovirus encoded microRNAs: Hitting targets. Expert Review of Anti-Infective Therapy., 13, 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  10. Serneri, G. G., Cecioni, I., Vanni, S., Paniccia, R., Bandinelli, B., Vetere, A., Janming, X., Bertolozzi, I., Boddi, M., Lisi, G. F., Sani, G., & Modesti, P. A. (2000). Selective upregulation of cardiac endothelin system in patients with ischemic but not idiopathic dilated cardiomyopathy: Endothelin-1 system in the human failing heart. Circulation Research, 86, 377–385.

    Article  CAS  PubMed  Google Scholar 

  11. Southwood, M., Ross, R. V. M., Kuc, R. E., Hagan, G., Sheares, K. K., Jenkins, D. P., Goddard, M., Davenport, A. P., & Pepke-Zaba, J. (2016). Endothelin ETA receptors predominate in chronic thromboembolic pulmonary hypertension. Life Sciences, 159, 104–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amiri, F., Virdis, A., Neves, M. F., Iglarz, M., Seidah, N. G., Touyz, R. M., Reudelhuber, T. L., & Schiffrin, E. L. (2004). Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation, 110, 2233–2240.

    Article  CAS  PubMed  Google Scholar 

  13. Jern, S. (1992). Pathophysiology of cardiovascular structural changes in hypertension. Clinical and experimental hypertension. Part A, Theory and practice., 14, 163–172.

    CAS  Google Scholar 

  14. Agapitov, A. V., & Haynes, W. G. (2002). Role of endothelin in cardiovascular disease. Journal of the renin-angiotensin-aldosterone system: JRAAS, 3, 1–15.

    Article  CAS  PubMed  Google Scholar 

  15. Vanêcková, I., Kramer, H. J., Bäcker, A., Vernerová, Z., Opocensky, M., & Cervenka, L. (2005). Early endothelin—A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension (Dalls, Tex.: 1979), 46, 969–974.

    Article  Google Scholar 

  16. Sutterwala, F. S., Haasken, S., & Cassel, S. L. (2014). Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences, 1319, 82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences, 20(13), 3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J., Wu, Q., Yu, J., Cao, X., & Xu, Z. (2019). miR-125a-5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox-LDL. Experimental and Therapeutic Medicine, 18, 1645–1652.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, W., Xi, D., Shi, Y., Wang, L., Zhong, H., Huang, Z., Liu, Y., Tang, Y., Lu, N., Wang, Y., Zhang, Z., Pei, J., Tang, N., & He, F. (2021). MicroRNA-1929-3p participates in murine cytomegalovirus-induced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation. International Journal of Molecular Medicine, 47, 719–731.

    Article  CAS  PubMed  Google Scholar 

  20. Li, P., Zhu, N., Yi, B., Wang, N., Chen, M., You, X., Zhao, X., Solomides, C. C., Qin, Y., & Sun, J. (2013). MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circulation Research, 113, 1117–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, H., & Hata, A. (2012). MicroRNA regulation of smooth muscle gene expression and phenotype. Current Opinion in Hematology, 19, 224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Popović, M., Smiljanić, K., Dobutović, B., Syrovets, T., Simmet, T., & Isenović, E. R. (2012). Human cytomegalovirus infection and atherothrombosis. Journal of Thrombosis and Thrombolysis, 33, 160–172.

    Article  PubMed  Google Scholar 

  23. Hummel, M., Zhang, Z., Yan, S., DePlaen, I., Golia, P., Varghese, T., Thomas, G., & Abecassis, M. I. (2001). Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: A model for reactivation from latency. Journal of Virology, 75, 4814–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi, Y., Xi, D., Zhang, X., Huang, Z., Tang, N., Liu, Y., Wang, L., Tang, Y., Zhong, H., & He, F. (2020). Screening and validation of differentially expressed microRNAs and target genes in hypertensive mice induced by cytomegalovirus infection. Bioscience Reports, 40(12).

  25. Li, X., Wei, Y., & Wang, Z. (2018). microRNA-21 and hypertension. Hypertension research: Official journal of the Japanese Society of Hypertension, 41, 649–661.

    Article  CAS  PubMed  Google Scholar 

  26. Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Human miR-221/222 in physiological and atherosclerotic vascular remodeling. BioMed Research International, 354517.

  27. Thyberg, J. (1998). Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histology and Histopathology, 13, 871–891.

    CAS  PubMed  Google Scholar 

  28. Nemenoff, R. A., Horita, H., Ostriker, A. C., Furgeson, S. B., Simpson, P. A., VanPutten, V., Crossno, J., Offermanns, S., & Weiser-Evans, M. C. M. (2011). SDF-1α induction in mature smooth muscle cells by inactivation of PTEN is a critical mediator of exacerbated injury-induced neointima formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1300–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Touyz, R. M., Alves-Lopes, R., Rios, F. J., Camargo, L. L., Anagnostopoulou, A., Arner, A., & Montezano, A. C. (2018). Vascular smooth muscle contraction in hypertension. Cardiovascular Research, 114, 529–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gurbanov, E., & Shiliang, X. (2006). The key role of apoptosis in the pathogenesis and treatment of pulmonary hypertension. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery, 30, 499–507.

    Article  PubMed  Google Scholar 

  31. Kockx, M. M., & Herman, A. G. (2000). Apoptosis in atherosclerosis: Beneficial or detrimental? Cardiovascular Research, 45, 736–746.

    Article  CAS  PubMed  Google Scholar 

  32. Schrijvers, D. M., Meyer, G. R. Y. D., Kockx, M. M., Herman, A. G., & Martinet, W. (2005). Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1256–1261.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider, M. P., Boesen, E. I., & Pollock, D. M. (2007). Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annual Review of Pharmacology and Toxicology, 47, 731–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, C., & Zhao, W. (2020). NLRP3 Inflammasome—a key player in antiviral responses. Frontiers in Immunology, 11, 211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, H.-J., Ren, X.-S., Xiong, X.-Q., Chen, Y.-Z., Zhao, M.-X., Wang, J.-J., Zhou, Y.-B., Han, Y., Chen, Q., Li, Y.-H., Kang, Y.-M., & Zhu, G.-Q. (2017). NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death & Disease, 8, e3074.

    Article  Google Scholar 

  36. Krishnan, S. M., Sobey, C. G., Latz, E., Mansell, A., & Drummond, G. R. (2014). IL-1β and IL-18: Inflammatory markers or mediators of hypertension? British Journal of Pharmacology, 171, 5589–5602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt, R. L., & Lenz, L. L. (2012). Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PloS One, 7, e45186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pirhonen, J., Sareneva, T., Kurimoto, M., Julkunen, I., & Matikainen, S. (1999). Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. Journal of Immunology (Baltimore, Md.: 1950), 162, 7322–7329.

    Article  CAS  PubMed  Google Scholar 

  39. Loomis, E. D., Sullivan, J. C., Osmond, D. A., Pollock, D. M., & Pollock, J. S. (2005). Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. The Journal of Pharmacology and Experimental Therapeutics, 315, 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  40. Vajjhala, P. R., Mirams, R. E., & Hill, J. M. (2012). Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. The Journal of Biological Chemistry, 287, 41732–41743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., Zimmermann, A. G., & Ting, J.P.-Y. (2007). Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proceedings of the National Academy of Sciences of the United States of America., 104, 8041–8046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coll, R. C., Hill, J. R., Day, C. J., Zamoshnikova, A., Boucher, D., Massey, N. L., Chitty, J. L., Fraser, J. A., Jennings, M. P., Robertson, A. A. B., & Schroder, K. (2019). MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nature Chemical Biology, 15, 556.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2020-PT330-003), the grants from the National Natural Science Foundation of China (Grant No. 31960187), the National College Students innovation and Entrepreneurship training program (Grant No. 202010759027), the Scientific research project of Shihezi University (Grant No. ZZZC201921A), the “3152” project of Shihezi University (Grant No. ZG010308), and the Youth Innovation and Talent Cultivation project of Shihezi University (grant NO.CXPY202216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Xi or Fang He.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical Approval

All animal studies were performed according to the guidelines of the Chinese Council on Animal Care, and this study was approved by the Ethics Committee of Shihezi Medical University (Shihezi, China).

Informed Consent

From all participants whose personal information is contained in this manuscript the additional written voluntary consent was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhou, W., Wang, L. et al. Murine Cytomegalovirus Infection Induced miR-1929-3p Down-Regulation Promotes the Proliferation and Apoptosis of Vascular Smooth Muscle Cells in Mice by Targeting Endothelin A Receptor and Downstream NLRP3 Activation Pathway. Mol Biotechnol 65, 1954–1967 (2023). https://doi.org/10.1007/s12033-023-00720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00720-3

Keywords

Navigation