Skip to main content

Advertisement

Log in

Computational Approaches for the Structure-Based Identification of Novel Inhibitors Targeting Nucleoid-Associated Proteins in Mycobacterium Tuberculosis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Implementation of computational tools in the identification of novel drug targets for Tuberculosis (TB) has been a promising area of research. TB has been a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) localized primarily on the lungs and it has been one of the most successful pathogen in the history of mankind. Extensively arising drug resistivity in TB has made it a global challenge and need for new drugs has become utmost important.The involvement of Nucleoid-Associated Proteins (NAPs) in maintaining the structure of the genomic material and regulating various cellular processes like transcription, DNA replication, repair and recombination makes significant, has opened a new arena to find the drugs targeting Mtb. The current study aims to identify potential inhibitors of NAPs through a computational approach. In the present work we worked on the eight NAPs of Mtb, namely, Lsr2, EspR, HupB, HNS, NapA, mIHF and NapM. The structural modelling and analysis of these NAPs were carried out. Moreover, molecular interaction were checked and binding energy was identified for 2500 FDA-approved drugs that were selected for antagonist analysis to choose novel inhibitors targeting NAPs of Mtb. Drugs including Amikacin, streptomycin, kanamycin, and isoniazid along with eight FDA-approved molecules that were found to be potential novel targets for these mycobacterial NAPs and have an impact on their functions. The potentiality of several anti-tubercular drugs as therapeutic agents identified through computational modelling and simulation unlocks a new gateway for accomplishing the goal to treat TB.

Graphical Abstract

Complete framework of the methodology employed in this study to predict inhibitors against mycobacterial NAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article. The Data used in the study was provided by DrugBank (on request).

References

  1. Singhvi, N., Gupta, V., Gaur, M., Sharma, V., Puri, A., Singh, Y., Dubey, G. P., & Lal, R. (2020). Interplay of human gut microbiome in health and wellness. Indian Journal of Microbiology, 60(1), 26–36.

    Article  CAS  PubMed  Google Scholar 

  2. Mohammadzadeh, R., Ghazvini, K., Farsiani, H., & Soleimanpour, S. (2021). Mycobacterium tuberculosis extracellular vesicles: Exploitation for vaccine technology and diagnostic methods. Critical Reviews in Microbiology, 47(1), 13–33.

    Article  CAS  PubMed  Google Scholar 

  3. Bhargava, A., Bhargava, M., & Juneja, A. (2021). Social determinants of tuberculosis: context, framework, and the way forward to ending TB in India. Expert Review of Respiratory Medicine, 15(7), 867–883.

    Article  CAS  PubMed  Google Scholar 

  4. Sudbury, E. L., Clifford, V., Messina, N. L., Song, R., & Curtis, N. (2020). Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: a systematic review. The Journal of infection, 81(6), 873–881.

    Article  CAS  PubMed  Google Scholar 

  5. Rowneki, M., Aronson, N., Du, P., Sachs, P., Blakemore, R., Chakravorty, S., Levy, S., Jones, A. L., Trivedi, G., Chebore, S., Addo, D., Byarugaba, D. K., Njobvu, P. D., Wabwire-Mangen, F., Erima, B., Ramos, E. S., Evans, C. A., Hale, B., Mancuso, J. D., & Alland, D. (2020). Detection of drug resistant mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PLoS ONE, 15(5), e0232343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, C., Wang, S., Shangguan, Y., Feng, X., Guo, W., Shi, P., Ji, Z., & Xu, K. (2020). Epidemic trends of tuberculosis in China from 1990 to 2017: Evidence from the global burden of disease study. Infection and Drug Resistance, 13, 1663–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seddon, J. A., Johnson, S., Palmer, M., van der Zalm, M. M., Lopez-Varela, E., Hughes, J., & Schaaf, H. S. (2021). Multidrug-resistant tuberculosis in children and adolescents: Current strategies for prevention and treatment. Expert Review of Respiratory Medicine, 15(2), 221–237.

    Article  CAS  PubMed  Google Scholar 

  8. Migliori, G. B., Tiberi, S., Zumla, A., Petersen, E., Chakaya, J. M., Wejse, C., & Zellweger, J. P. (2020). MDR/XDR-TB management of patients and contacts: challenges facing the new decade. The 2020 clinical update by the global tuberculosis network. International journal of infectious diseases IJID Official Publication of the International Society for Infectious Diseases, 92S, S15–S25.

    PubMed  Google Scholar 

  9. Silva, J. V., Santos, S., Machini, M. T., & Giarolla, J. (2021). Neglected tropical diseases and infectious illnesses: Potential targeted peptides employed as hits compounds in drug design. Journal of Drug Targeting, 29(3), 269–283.

    Article  CAS  PubMed  Google Scholar 

  10. Singh, Y., Beamer, G., Sun, X., & Shukla, P. (2022). Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Critical Reviews in Biotechnology, 42(4), 532–547.

    PubMed  Google Scholar 

  11. Stojkova, P., Spidlova, P., & Stulik, J. (2019). Nucleoid-associated protein HU: A lilliputian in gene regulation of bacterial virulence. Frontiers in Cellular and Infection Microbiology, 9, 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swiercz, J. P., Nanji, T., Gloyd, M., Guarné, A., & Elliot, M. A. (2013). A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Research, 41(7), 4171–4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Odermatt, N. T., Sala, C., Benjak, A., & Cole, S. T. (2018). Essential nucleoid associated protein mIHF (Rv1388) controls virulence and housekeeping genes in mycobacterium tuberculosis. Scientific Reports, 8(1), 14214.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Basu, D., Khare, G., Singh, S., Tyagi, A., Khosla, S., & Mande, S. C. (2009). A novel nucleoid-associated protein of mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Research, 37(15), 4944–4954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kriel, N. L., Gallant, J., van Wyk, N., van Helden, P., Sampson, S. L., Warren, R. M., & Williams, M. J. (2018). Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinburgh, Scotland), 108, 169–177.

    Article  CAS  PubMed  Google Scholar 

  16. Sritharan, M. (2016). Iron homeostasis in mycobacterium tuberculosis: Mechanistic insights into siderophore-mediated iron uptake. Journal of bacteriology, 198(18), 2399–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hołówka, J., Trojanowski, D., Janczak, M., Jakimowicz, D., & Zakrzewska-Czerwińska, J. (2018). The origin of chromosomal replication is asymmetrically positioned on the mycobacterial nucleoid, and the timing of its firing depends on HupB. Journal of Bacteriology, 200(10), e00044-e118.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pule, C. M., Sampson, S. L., Warren, R. M., Black, P. A., van Helden, P. D., Victor, T. C., & Louw, G. E. (2016). Efflux pump inhibitors: Targeting mycobacterial efflux systems to enhance TB therapy. The Journal of Antimicrobial Chemotherapy, 71(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhari, K., Surana, S., Jain, P., & Patel, H. M. (2016). Mycobacterium tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. European Journal of Medicinal Chemistry, 124, 160–185.

    Article  CAS  PubMed  Google Scholar 

  20. Sabe, V. T., Tolufashe, G. F., Ibeji, C. U., Maseko, S. B., Govender, T., Maguire, G., Lamichhane, G., Honarparvar, B., & Kruger, H. G. (2019). Identification of potent L, D-transpeptidase 5 inhibitors for Mycobacterium tuberculosis as potential anti-TB leads: Virtual screening and molecular dynamics simulations. Journal of Molecular Modeling, 25(11), 328.

    Article  CAS  PubMed  Google Scholar 

  21. Dame, R. T., Rashid, F. M., & Grainger, D. C. (2020). Chromosome organization in bacteria: Mechanistic insights into genome structure and function. Nature Reviews Genetics, 21(4), 227–242.

    Article  CAS  PubMed  Google Scholar 

  22. Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317–325.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J., Wu, M. Y., Tan, J. Q., Li, M., & Lu, J. H. (2019). High content screening for drug discovery from traditional Chinese medicine. Chinese Medicine, 14, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tong, J. C., & Ren, E. C. (2009). Immunoinformatics: Current trends and future directions. Drug Discovery Today, 14(13–14), 684–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasan, M., Islam, S., Chakraborty, S., Mustafa, A. H., Azim, K. F., Joy, Z. F., Hossain, M. N., Foysal, S. H., & Hasan, M. N. (2020). Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. Journal of Biomolecular Structure & Dynamics, 38(10), 2898–2915.

    Article  CAS  Google Scholar 

  26. Zheng, M., Zhao, J., Cui, C., Fu, Z., Li, X., Liu, X., Ding, X., Tan, X., Li, F., Luo, X., Chen, K., & Jiang, H. (2018). Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Medicinal Research Reviews, 38(3), 914–950.

    Article  PubMed  Google Scholar 

  27. Sunita, S., & A., Singh, Y., & Shukla, P. (2020). Computational tools for modern vaccine development. Human Vaccines & Immunotherapeutics, 16(3), 723–735.

    Article  CAS  Google Scholar 

  28. Yuan, P., He, L., Chen, D., Sun, Y., Ge, Z., Shen, D., & Lu, Y. (2020). Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin. Journal of Proteomics, 212, 103576.

    Article  CAS  PubMed  Google Scholar 

  29. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(Suppl 1), S162–S173.

    PubMed  Google Scholar 

  31. Muehlemann, S. (2016). Making apprenticeships profitable for firms and apprentices: The Swiss model. Challenge, 59(5), 390–404.

    Article  Google Scholar 

  32. Goddard, T. D., Brilliant, A. A., Skillman, T. L., Vergenz, S., Tyrwhitt-Drake, J., Meng, E. C., & Ferrin, T. E. (2018). Molecular visualization on the holodeck. Journal of Molecular Biology, 430(21), 3982–3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(2), W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., & Elofsson, A. (2001). A study of quality measures for protein threading models. BMC Bioinformatics, 2(1), 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., & Feng, Z. (2019). RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474.

    Article  CAS  PubMed  Google Scholar 

  36. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., & Wilson, M. (2017). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  Google Scholar 

  37. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 30: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(1), W363–W367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajasekhar, S., Karuppasamy, R., & Chanda, K. (2021). Exploration of potential inhibitors for tuberculosis via structure-based drug design, molecular docking, and molecular dynamics simulation studies. Journal of Computational Chemistry, 42(24), 1736–1749.

    Article  CAS  PubMed  Google Scholar 

  40. Tanwar, G., & Purohit, R. (2019). Gain of native conformation of Aurora A S155R mutant by small molecules. Journal of Cellular Biochemistry, 120(7), 11104–11114.

    Article  CAS  PubMed  Google Scholar 

  41. Rosário-Ferreira, N., Baptista, S. J., Barreto, C. A., Rodrigues, F. E., Silva, T. F., Ferreira, S. G., & Moreira, I. S. (2021). In silico end-to-end protein-ligand interaction characterization pipeline: The case of SARS-CoV-2. ACS Synthetic Biology, 10(11), 3209–3235.

    Article  PubMed  Google Scholar 

  42. Mousquer, G. T., Peres, A., & Fiegenbaum, M. (2020). Pathology of TB/COVID-19 co-infection: The phantom menace. Tuberculosis, 126, 102020.

    Article  PubMed  Google Scholar 

  43. Singh, P. K., Joseph, J., Goyal, S., Grover, A., & Shukla, P. (2016). Functional analysis of the binding model of microbial inulinases using docking and molecular dynamics simulation. Journal of Molecular Modeling, 22(4), 69.

    Article  PubMed  Google Scholar 

  44. Uddin, R., Siddiqui, Q. N., Azam, S. S., Saima, B., & Wadood, A. (2018). Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach. European Journal of Pharmaceutical Sciences, 114, 13–23.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Z., Zeng, X., & Tsui, S. K. W. (2019). Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics, 20(1), 394.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chan, H. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing drug discovery via artificial intelligence. Trends in Pharmacological Sciences, 40(8), 592–604.

    Article  CAS  PubMed  Google Scholar 

  47. Lipinski, C., Maltarollo, V., Oliveira, P., da Silva, A., & Honorio, K. (2019). Advances and perspectives in applying deep learning for drug design and discovery. Frontiers in Robotics and AI, 6, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Datta, C., Jha, R. K., Ganguly, S., & Nagaraja, V. (2019). NapA (Rv0430), a novel nucleoid-associated protein that regulates a virulence operon in Mycobacterium tuberculosis in a supercoiling-dependent manner. Journal of Molecular Biology, 431(8), 1576–1591.

    Article  CAS  PubMed  Google Scholar 

  49. Blasco, B., Chen, J. M., Hartkoorn, R., Sala, C., Uplekar, S., Rougemont, J., & …& Cole, S. T. (2012). Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathogens, 8(3), e1002621.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jin, C., Wu, X., Dong, C., Li, F., Fan, L., Xiong, S., & Dong, Y. (2019). EspR promotes mycobacteria survival in macrophages by inhibiting MyD88 mediated inflammation and apoptosis. Tuberculosis, 116, 22–31.

    Article  CAS  PubMed  Google Scholar 

  51. Sui, J., Qiao, W., Xiang, X., & Luo, Y. (2022). Epigenetic changes in Mycobacterium tuberculosis and its host provide potential targets or biomarkers for drug discovery and clinical diagnosis. Pharmacological Research, 179, 106195.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, Y., Xie, Z., Zhou, X., Li, W., Zhang, H., & He, Z. G. (2019). NapM enhances the survival of Mycobacterium tuberculosis under stress and in macrophages. Communications Biology, 2(1), 1–9.

    Article  Google Scholar 

  53. Pinault, L., Han, J. S., Kang, C. M., Franco, J., & Ronning, D. R. (2013). Zafirlukast inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 57(5), 2134–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Odermatt, N. T., Sala, C., Benjak, A., Kolly, G. S., Vocat, A., Lupien, A., & Cole, S. T. (2017). Rv3852 (H-NS) of Mycobacterium tuberculosis is not involved in nucleoid compaction and virulence regulation. Journal of Bacteriology. https://doi.org/10.1128/JB.00129-17

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shi, W., Zhang, S., Feng, J., Cui, P., Zhang, W., & Zhang, Y. (2017). Clofazimine targets essential nucleoid associated protein, mycobacterial integration host factor (mIHF), in Mycobacterium tuberculosis. bioRxiv. https://doi.org/10.1101/192161

    Article  Google Scholar 

  56. Maji, A., Misra, R., Dhakan, D. B., Gupta, V., Mahato, N. K., Saxena, R., Mittal, P., Thukral, N., Sharma, E., Singh, A., Virmani, R., Gaur, M., Singh, H., Hasija, Y., Arora, G., Agrawal, A., Chaudhry, A., Khurana, J. P., Sharma, V. K., … Singh, Y. (2018). Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environmental Microbiology, 20(1), 402–419.

    Article  CAS  PubMed  Google Scholar 

  57. Singhvi, N., Singh, P., Prakash, O., Gupta, V., Lal, S., Bechthold, A., Singh, Y., Singh, R. K., & Lal, R. (2021). Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. Journal of Proteomics, 239, 104168.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PS acknowledges, the Lab Infrastructure grant by BHU, Varanasi (F(C)/XVIII-Spl.Fund/Misc/Infrastructure/Instt.Sc/2019–2020/10290) and BTiS-NET-Sub-Distributed Information Centre, funded by DBT, Govt. of India at the School of Biotechnology, Banaras Hindu University, Varanasi, India. Authors acknowledge DrugBank for providing the FDA approved molecules used in this study. PS also acknowledges ‘Faculty Incentive Grant’ by Institute of Eminence (IoE) Scheme by BHU, Varanasi (Letter No R/ Dev/D/IoE/Seed & Incentive/2022-23/50024).

Author information

Authors and Affiliations

Authors

Contributions

S: methodology, writing- original draft preparation. NS: software validation, Data curation, visualization, writing- original draft preparation. VG: Software validation, Data curation, Visualization. YS: writing- reviewing and editing and supervision. PS: conceptualization, writing- reviewing and editing and supervision.

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunita, Singhvi, N., Gupta, V. et al. Computational Approaches for the Structure-Based Identification of Novel Inhibitors Targeting Nucleoid-Associated Proteins in Mycobacterium Tuberculosis. Mol Biotechnol 66, 814–823 (2024). https://doi.org/10.1007/s12033-023-00710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00710-5

Keywords

Navigation