Skip to main content
Log in

Development and Characterization of a Novel Single-Chain Antibody Against B-Cell Activating Factor

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

As a member of the tumor necrosis factor (TNF) superfamily, the B-cell activating factor (BAFF) plays a crucial role in B-cell survival and differentiation. Overexpression of this protein has been closely linked to autoimmune disorders and some B-cell malignancies. Using monoclonal antibodies (mAbs) against the BAFF soluble domain appears to be a complementary treatment for some of these diseases. This study aimed to produce and develop a specific Nanobody (Nb), a variable camelid antibody domain, against the soluble domain of BAFF protein. After camel immunization with recombinant protein and preparing cDNA from total RNAs separated from camel lymphocytes, an Nb library was developed. Individual colonies capable of binding selectively to rBAFF were obtained by periplasmic-ELISA, sequenced, and expressed in a bacterial expression system. The specificity and affinity of selected Nb were determined and its target identification and functionality were evaluated using flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Smith, D., & Germolec, D. (1999). Introduction to immunology and autoimmunity. Enviromental Health Perspectives, 107(Suppl. 5), 661–665. https://doi.org/10.1289/ehp.99107s5661

    Article  Google Scholar 

  2. Singh, S. P., Wal, P., Wal, A., Srivastava, V., Tiwari, R., & Sharma, R. D. (2016). Understanding autoimmune disease: An update review. IJPTB, 3, 51–65.

    CAS  Google Scholar 

  3. Wang, L., Wang, F. S., & Gershwin, M. E. (2015). Human autoimmune diseases: A comprehensive update. Journal of Internal Medicine, 278(4), 369–395.

    Article  CAS  PubMed  Google Scholar 

  4. Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–7.

    Article  PubMed  Google Scholar 

  5. Racadot, E., Wendling, D., Rumbach, L., Wijdenes, J., & Herve, P. (1994). Current concepts in the treatment of autoimmune diseases with monoclonal antibodies. Clinical Immunotherapeutics, 1, 199–208.

    Article  Google Scholar 

  6. Jamilloux, Y., El Jammal, T., Vuitton, L., Gerfaud-Valentin, M., Kerever, S., & Sève, P. (2019). JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmunity Reviews, 18(11), 102390.

    Article  CAS  PubMed  Google Scholar 

  7. Mackay, F., & Browning, J. L. (2002). BAFF: A fundamental survival factor for B cells. Nature Reviews Immunology, 2(7), 465–475.

    Article  CAS  PubMed  Google Scholar 

  8. Vincent, F. B., Morand, E. F., Schneider, P., & Mackay, F. (2014). The BAFF/APRIL system in SLE pathogenesis. Nature Reviews Rheumatology, 10(6), 365–373.

    Article  CAS  PubMed  Google Scholar 

  9. Schneider, P., MacKay, F., Steiner, V., Hofmann, K., Bodmer, J.-L., Holler, N., et al. (1999). BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. The Journal of Experimental Medicine, 189(11), 1747–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davidson, A. (2010). Targeting BAFF in autoimmunity. Current Opinion in Immunology, 22(6), 732–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakurai, D., Kanno, Y., Hase, H., Kojima, H., Okumura, K., & Kobata, T. (2007). TACI attenuates antibody production costimulated by BAFF-R and CD40. European Journal of Immunology, 37(1), 110–118.

    Article  CAS  PubMed  Google Scholar 

  12. Stadanlick, J. E., Kaileh, M., Karnell, F. G., Scholz, J. L., Miller, J. P., Quinn Iii, W. J., et al. (2008). Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nature Immunology, 9(12), 1379–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rickert, R. C., Jellusova, J., & Miletic, A. V. (2011). Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunological Reviews, 244(1), 115–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mackay, F., & Schneider, P. (2008). TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine & Growth Factor Reviews, 19(3–4), 263–276.

    Article  CAS  Google Scholar 

  15. Hengeveld, P., & Kersten, M. (2015). B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer Journal, 5(2), e282-e.

    Article  Google Scholar 

  16. Rihacek, M., Bienertova-Vasku, J., Valik, D., Sterba, J., Pilatova, K., & Zdrazilova-Dubska, L. (2015). B-cell activating factor as a cancer biomarker and its implications in cancer-related cachexia. BioMed Research International. https://doi.org/10.1155/2015/792187

    Article  PubMed  PubMed Central  Google Scholar 

  17. Manetta, J., Bina, H., Ryan, P., Fox, N., Witcher, D. R., & Kikly, K. (2014). Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. Journal of inflammation research, 7, 121.

    PubMed  PubMed Central  Google Scholar 

  18. Liu, Z., & Davidson, A. (2011). BAFF inhibition: A new class of drugs for the treatment of autoimmunity. Experimental Cell Research, 317(9), 1270–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan, A. C., & Carter, P. J. (2010). Therapeutic antibodies for autoimmunity and inflammation. Nature Reviews Immunology, 10(5), 301–316.

    Article  CAS  PubMed  Google Scholar 

  20. Singh, S., Tank, N. K., Dwiwedi, P., Charan, J., Kaur, R., Sidhu, P., et al. (2018). Monoclonal antibodies: A review. Current Clinical Pharmacology, 13(2), 85–99.

    Article  PubMed  Google Scholar 

  21. Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., et al. (2006). Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proceedings of the National Academy of Sciences, 103(40), 14701–14706.

    Article  CAS  Google Scholar 

  22. Kholodenko, R. V., Kalinovsky, D. V., Doronin, I. I., Ponomarev, E. D., & Kholodenko, I. V. (2019). Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations. Current Medicinal Chemistry, 26(3), 396–426.

    Article  CAS  PubMed  Google Scholar 

  23. Doyle, P. J., Arbabi-Ghahroudi, M., Gaudette, N., Furzer, G., Savard, M. E., Gleddie, S., et al. (2008). Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Molecular Immunology, 45(14), 3703–3713.

    Article  CAS  PubMed  Google Scholar 

  24. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G., Wohlkönig, A., Ruf, A., et al. (2014). A general protocol for the generation of Nanobodies for structural biology. Nature Protocols, 9(3), 674–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jovčevska, I., Zupanec, N., Kočevar, N., Cesselli, D., Podergajs, N., Stokin, C. L., et al. (2014). TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS ONE, 9(11), e113688.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Movahedi, K., Schoonooghe, S., Laoui, D., Houbracken, I., Waelput, W., Breckpot, K., et al. (2012). Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Research, 72(16), 4165–4177.

    Article  CAS  PubMed  Google Scholar 

  27. Ranjibar, F., Habibi-Anbouhi, M., Kazemi-Lomedasht, F., Aghaee-Bakhtiyari, S. H., Alirahimi, E., & Behdani, M. (2018). Cell-specific targeting by engineered M13 bacteriophage expressing VEGFR2 nanobody. Iranian Journal of Basic Medical Sciences, 21(9), 884.

    PubMed  PubMed Central  Google Scholar 

  28. Martineau, P. (2010). Affinity measurements by competition ELISA (pp. 657–665). Springer.

    Google Scholar 

  29. Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. Journal of Immunological Methods, 100(1–2), 173–179.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M., & Cancro, M. P. (2002). Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. The Journal of Immunology, 168(12), 5993–5996.

    Article  CAS  PubMed  Google Scholar 

  31. Baker, K. P., Edwards, B. M., Main, S. H., Choi, G. H., Wager, R. E., Halpern, W. G., et al. (2003). Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis & Rheumatism, 48(11), 3253–3265.

    Article  CAS  Google Scholar 

  32. Furie, R., Stohl, W., Ginzler, E. M., Becker, M., Mishra, N., Chatham, W., et al. (2008). Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: A phase I trial in patients with systemic lupus erythematosus. Arthritis Research & Therapy, 10(5), 1–15.

    Article  Google Scholar 

  33. Zhang, F., Bae, S.-C., Bass, D., Chu, M., Egginton, S., Gordon, D., et al. (2018). A pivotal phase III, randomised, placebo-controlled study of belimumab in patients with systemic lupus erythematosus located in China, Japan and South Korea. Annals of the Rheumatic Diseases, 77(3), 355–363.

    Article  CAS  PubMed  Google Scholar 

  34. Van Vollenhoven, R., Kinnman, N., Vincent, E., Wax, S., & Bathon, J. (2011). Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: Results of a phase II, randomized, placebo-controlled trial. Arthritis & Rheumatism, 63(7), 1782–1792.

    Article  Google Scholar 

  35. Bruno, V., Battaglia, G., & Nicoletti, F. (2011). The advent of monoclonal antibodies in the treatment of chronic autoimmune diseases. Neurological Sciences, 31(3), 283–288.

    Article  PubMed  Google Scholar 

  36. Furie, R., Petri, M., Zamani, O., Cervera, R., Wallace, D. J., Tegzová, D., et al. (2011). A phase 3, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits BLyS, in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 63(12), 3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levy, R. A., Gonzalez-Rivera, T., Khamashta, M., Fox, N. L., Jones-Leone, A., Rubin, B., et al. (2021). 10 Years of belimumab experience: What have we learnt? Lupus, 30(11), 1705–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamers-Casterman, C., Atarhouch, T., Muyldermans, Sa., Robinson, G., Hammers, C., Songa, E. B., et al. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363(6428), 446–8.

    Article  CAS  PubMed  Google Scholar 

  39. Moghimi, S. M., Rahbarizadeh, F., Ahmadvand, D., & Parhamifar, L. (2013). Heavy chain only antibodies: a new paradigm in personalized HER2+ breast cancer therapy. BioImpacts, 3(1), 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cortez-Retamozo, V., Lauwereys, M., Hassanzadeh, Gh. G., Gobert, M., Conrath, K., Muyldermans, S., et al. (2002). Efficient tumor targeting by single-domain antibody fragments of camels. International Journal of Cancer, 98(3), 456–462.

    Article  CAS  PubMed  Google Scholar 

  41. Hussack, G., Hirama, T., Ding, W., MacKenzie, R., & Tanha, J. (2011). Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS ONE, 6(11), e28218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., et al. (2002). Single-domain antibody fragments with high conformational stability. Protein Science, 11(3), 500–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mir, M. A., Mehraj, U., Sheikh, B. A., & Hamdani, S. S. (2020). Nanobodies: The “magic bullets” in therapeutics, drug delivery and diagnostics. Human Antibodies, 28(1), 29–51.

    Article  CAS  PubMed  Google Scholar 

  44. Nie, S., Wang, Z., Moscoso-Castro, M., D’Souza, P., Lei, C., Xu, J., et al. (2020). Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antibody Therapeutics, 3(1), 18–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, E. Y., & Shah, K. (2020). Nanobodies: Next generation of cancer diagnostics and therapeutics. Frontiers in Oncology, 10, 1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jindal, V., Khoury, J., Gupta, R., & Jaiyesimi, I. (2020). Current status of chimeric antigen receptor T-cell therapy in multiple myeloma. American Journal of Clinical Oncology, 43(5), 371–377.

    Article  CAS  PubMed  Google Scholar 

  47. Li, S., Jiang, K., Wang, T., Zhang, W., Shi, M., Chen, B., et al. (2020). Nanobody against PDL1. Biotechnology letters, 42(5), 727–736.

    Article  CAS  PubMed  Google Scholar 

  48. Kazemi-Lomedasht, F., Behdani, M., Habibi-Anbouhi, M., & Shahbazzadeh, D. (2016). Production and characterization of novel camel single domain antibody targeting mouse vascular endothelial growth factor. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 35(3), 167–171.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Pasteur Institute of Iran (Grant Number 994) and the National Institute for Medical Research Development (NIMAD), grant no. 943314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Behdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardani-Jouneghani, R., Irani, S., Habibi-Anbouhi, M. et al. Development and Characterization of a Novel Single-Chain Antibody Against B-Cell Activating Factor. Mol Biotechnol 65, 1968–1978 (2023). https://doi.org/10.1007/s12033-023-00700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00700-7

Keywords

Navigation