Skip to main content
Log in

Uncovering the Interaction Interface Between Harpin (Hpa1) and Rice Aquaporin (OsPIP1;3) Through Protein–Protein Docking: An In Silico Approach

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hpa1 (a type of harpin) is involved in T3SS (Type III Secretion System) assembly in the infection mechanism by Xanthomonas Oryzae pv. oryzae (Xoo). Hpa1 interacts with the plasma membrane components of plants thereby assisting effector proteins toward the cytoplasm, wherein effectors execute their pathological functions. Independently, harpins also induce hypersensitive response and systemic acquired resistance in plants. However, lack of knowledge regarding the plant–harpin interaction mechanism constrains the pathway of its agricultural application. Although an in vitro study proved that Hpa1 protein can interact with OsPIP1;3, a rice aquaporin, the structural basis of the interaction is yet to be discovered. The presented work is the first of its kind where an in silico approach is used for the PPI (protein–protein interaction) of harpin protein. The study discovered participation of Hpa1 N-terminal amino acids at the interface. Besides, MD simulation studies were performed to assess the stability. RMSD values were 0.35 ± 0.049, 0.73 ± 0.11, and 0.50 ± 0.065 nm for OsPIP1;3, Hpa1, and Hpa1-OsPIP1;3 complex, respectively. Additionally, Residue-wise fluctuations have also been studied post-MDS. Taken together, these findings not only give a solid foundation for a deeper knowledge of various interacting target molecules with Harpin protein orthologs but also bring a new avenue for the structural–functional relationship study of harpin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HR:

Hypersensitive response

SAR:

Systemic acquired resistance

T3SS:

Type III translocation system

Xoo :

Xanthomonas oryzae pv. Oryzae

BB:

Bacterial blight

LRR-RLK:

Leucine-rich repeat receptor-like serine/threonine kinases

GRAVY:

Grand average of hydropathicity

I-TASSER:

Iterative Threading Assembly Refinement

C-score:

Confidence score

CASTp:

Computed Atlas of Surface Topography of protein

HADDOCK program:

High Ambiguity Driven protein–protein DOCKing

AIRs:

Ambiguous interaction restraints

RMSD:

Root mean square deviation

TM score:

Template modeling score

SUB-Y2H:

Split-ubiquitin yeast two-hybrid

BiFC:

Bimolecular fluorescence complementation

References

  1. Jia, Y., Li, C., Li, Q., Liu, P., Liu, D., Liu, Z., Wang, Y., Jiang, G., & Zhai, W. (2020). Characteristic dissection of Xanthomonas oryzae pv. oryzae responsive MicroRNAs in rice. International Journal of Molecular Sciences. https://doi.org/10.3390/IJMS21030785

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ji, H., & Dong, H. (2015). Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Molecular Plant Pathology, 16(7), 762–773. https://doi.org/10.1111/mpp.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi, M. S., Kim, W., Lee, C., & Oh, C. S. (2013). Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Molecular Plant-Microbe Interactions, 26(10), 1115–1122. https://doi.org/10.1094/MPMI-02-13-0050-CR

    Article  CAS  PubMed  Google Scholar 

  4. Galán, J. E., & Collmer, A. (1999). Type III secretion machines: Bacterial devices for protein delivery into host cells. Science, 284(5418), 1322–1328. https://doi.org/10.1126/science.284.5418.1322

    Article  PubMed  Google Scholar 

  5. Bocsanczy, A. M., Nissinen, R. M., Oh, C., & Beer, S. V. (2008). HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Molecular Plant Pathology, 9(4), 425. https://doi.org/10.1111/J.1364-3703.2008.00471.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meng, X., Bonasera, J. M., Kim, J. F., Nissinen, R. M., & Beer, S. V. (2006). Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Molecular Plant-Microbe Interactions : MPMI, 19(1), 53–61. https://doi.org/10.1094/MPMI-19-0053

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X., Zhang, L., Ji, H., Mo, X., Li, P., Wang, J., & Dong, H. (2018). Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiology. https://doi.org/10.1186/S12866-018-1251-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, P., Zhang, L., Mo, X., Ji, H., Bian, H., Hu, Y., Majid, T., Long, J., Pang, H., Tao, Y., Ma, J., & Dong, H. (2019). Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. Journal of Experimental Botany, 70(12), 3057–3073. https://doi.org/10.1093/jxb/erz130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, X., Han, B., Xu, M., Han, L., Zhao, Y., Liu, Z., Dong, H., & Zhang, C. (2014). Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. Planta, 239(4), 831–846. https://doi.org/10.1007/s00425-013-2013-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X., Han, L., Zhao, Y., You, Z., Dong, H., & Zhang, C. (2014). Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. Journal of Biosciences, 39(1), 127–137. https://doi.org/10.1007/s12038-013-9408-6

    Article  CAS  PubMed  Google Scholar 

  11. Chuang, H.-W., Harnrak, A., Chen, Y.-C., & Hsu, C.-M. (2010). A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochemical and Biophysical Research Communications, 402(2), 414–420. https://doi.org/10.1016/j.bbrc.2010.10.047

    Article  CAS  PubMed  Google Scholar 

  12. Ji, Z.-L., Yu, M.-H., Ding, Y.-Y., Li, J., Zhu, F., He, J.-X., & Yang, L.-N. (2021). Coiled-coil n21 of hpa1 in Xanthomonas oryzae pv. Oryzae promotes plant growth, disease resistance and drought tolerance in non-hosts via eliciting hr and regulation of multiple defense response genes. International Journal of Molecular Sciences, 22(1), 1–18. https://doi.org/10.3390/ijms22010203

    Article  CAS  Google Scholar 

  13. Oh, C. S., & Beer, S. V. (2007). AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology, 145(2), 426. https://doi.org/10.1104/PP.107.103432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haapalainen, M., Engelhardt, S., Kuefner, I., Li, C. M., Nuernberger, T., Lee, J., Romantschuk, M., & Taira, S. (2011). Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 12(2), 151–166. https://doi.org/10.1111/J.1364-3703.2010.00655.X

    Article  CAS  PubMed  Google Scholar 

  15. Li, L., Wang, H., Gago, J., Cui, H., Qian, Z., Kodama, N., Ji, H., Tian, S., Shen, D., Chen, Y., Sun, F., Xia, Z., Ye, Q., Sun, W., Flexas, J., & Dong, H. (2015). Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Scientific Reports. https://doi.org/10.1038/srep17207

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., GarciaCastro, L., … Teodoro, D. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480. https://doi.org/10.1093/NAR/GKAA1100

    Article  Google Scholar 

  17. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). The Proteomics Protocols Handbook (pp. 571–608). Springer.

    Book  Google Scholar 

  18. Rost, B., & Sander, C. (1993). Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology, 232(2), 584–599. https://doi.org/10.1006/JMBI.1993.1413

    Article  CAS  PubMed  Google Scholar 

  19. Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., Bhowmik, D., & Rost, B. (2021). ProtTrans: Towards cracking the language of lifes code through self-supervised deep learning and high performance computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(01), 1–1. https://doi.org/10.1109/TPAMI.2021.3095381

    Article  Google Scholar 

  20. Bernhofer, M., Kloppmann, E., Reeb, J., & Rost, B. (2016). TMSEG: Novel prediction of transmembrane helices. Proteins, 84(11), 1706–1716. https://doi.org/10.1002/PROT.25155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2014). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  Google Scholar 

  22. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W., & Zhang, Y. (2021). Article Folding non-homologous proteins by coupling deep- learning contact maps with I-TASSER assembly simulations ll Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/JCC.20084

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45(W1), W291–W299. https://doi.org/10.1093/NAR/GKX366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148

    Article  CAS  PubMed  Google Scholar 

  27. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944/FULL

    Article  CAS  Google Scholar 

  28. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/NAR/GKY473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mallipeddi, P. L., Joshi, M., & Briggs, J. M. (2012). Pharmacophore-based virtual screening to aid in the identification of unknown protein function. Chemical Biology & Drug Design, 80(6), 828–842. https://doi.org/10.1111/J.1747-0285.2012.01408.X

    Article  CAS  Google Scholar 

  30. Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. M. J. J. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences. https://doi.org/10.3389/FMOLB.2021.729513

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/J.JMB.2015.09.014

    Article  PubMed  Google Scholar 

  32. Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of molecular biology, 372(3), 774–797. https://doi.org/10.1016/J.JMB.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  33. Manhas, A., Patel, D., Lone, M. Y., & Jha, P. C. (2019). Identification of natural compound inhibitors against PfDXR: A hybrid structure-based molecular modeling approach and molecular dynamics simulation studies. Journal of Cellular Biochemistry, 120(9), 14531–14543. https://doi.org/10.1002/jcb.28714

    Article  CAS  PubMed  Google Scholar 

  34. Patel, D., Athar, M., & Jha, P. C. (2021). Exploring Ruthenium-Based Organometallic Inhibitors against Plasmodium falciparum Calcium Dependent Kinase 2 (PfCDPK2): A combined ensemble docking QM/MM and molecular dynamics Study. ChemistrySelect, 6(32), 8189–8199. https://doi.org/10.1002/slct.202101801

    Article  CAS  Google Scholar 

  35. Patel, D., Athar, M., & Jha, P. C. (2022). Computational investigation of binding of chloroquinone and hydroxychloroquinone against PLPro of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40(7), 3071–3081. https://doi.org/10.1080/07391102.2020.1844804

    Article  CAS  PubMed  Google Scholar 

  36. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  37. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  Google Scholar 

  38. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  39. Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

    Article  CAS  Google Scholar 

  40. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  41. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  42. Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6(3), 197–208. https://doi.org/10.1038/nrm1589

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., & Skolnick, J. (2004). Automated structure prediction of weakly homologous proteins on a genomic scale. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7594–7599. https://doi.org/10.1073/PNAS.0305695101/ASSET/E5BEAFE8-B17F-4E5B-8541-2994B78D1BD4/ASSETS/GRAPHIC/ZPQ0210448830007.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ji, H., & Dong, H. (2016). Biological significance and topological basis of aquaporin-partnering protein-protein interactions. Plant Signaling and Behavior. https://doi.org/10.1080/15592324.2015.1011947

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushikesh Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patoliya, J., Thaker, K., Rabadiya, K. et al. Uncovering the Interaction Interface Between Harpin (Hpa1) and Rice Aquaporin (OsPIP1;3) Through Protein–Protein Docking: An In Silico Approach. Mol Biotechnol 66, 756–768 (2024). https://doi.org/10.1007/s12033-023-00690-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00690-6

Keywords

Navigation