Skip to main content
Log in

Scaffold Hopping and Screening for Potent Small Molecule Agonists for GRP94: Implications to Alleviate ER Stress-Associated Pathogenesis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Disparity in the activity of Endoplasmic reticulum (ER) leads to degenerative diseases, mainly associated with protein misfolding and aggregation leading to cellular dysfunction and damage, ultimately contributing to ER stress. ER stress activates the complex network of Unfolded Protein Response (UPR) signaling pathways mediated by transmembrane proteins IRE1, ATF6, and PERK. In addition to UPR, many ER chaperones have evolved to optimize the output of properly folded secretory and membrane proteins. Glucose-regulated protein 94 (GRP94), an ER chaperone of heat shock protein HSP90 family, directs protein folding through interaction with other components of the ER protein folding machinery and assists in ER-associated degradation (ERAD). Activation of GRP94 would increase the efficacy of protein folding machinery and regulate the UPR pathway toward homeostasis. The present study aims to screen for novel agonists for GRP94 based on Core hopping, pharmacophore hypothesis, 3D-QSAR, and virtual screening with small-molecule compound libraries in order to improve the efficiency of native protein folding by enhancing GRP94 chaperone activity, therefore to reduce protein misfolding and aggregation. In this study, we have employed the strategy of small molecule-dependent ER programming to enhance the chaperone activity of GRP94 through scaffold hopping-based screening approach to identify specific GRP94 agonists. New scaffolds generated by altering the cores of NECA, the known GRP94 agonist, were validated by employing pharmacophore hypothesis testing, 3D-QSAR modeling, and molecular dynamics simulations. This facilitated the identification of small molecules to improve the efficiency of native protein folding by enhancing GRP94 activity. High-throughput virtual screening of the selected pharmacophore hypothesis against Selleckchem and ZINC databases retrieved a total of 2,27,081 compounds. Further analysis on docking and ADMET properties revealed Epimedin A, Narcissoside, Eriocitrin 1,2,3,4,6-O-Pentagalloylglucose, Secoisolariciresinol diglucoside, ZINC92952357, ZINC67650204, and ZINC72457930 as potential lead molecules. The stability and interaction of these small molecules were far better than the known agonist, NECA indicating their efficacy in selectively alleviating ER stress-associated pathogenesis. These results substantiate the fact that small molecule-dependent ER reprogramming would activate the ER chaperones and therefore reduce the protein misfolding as well as aggregation associated with ER stress in order to restore cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

IRE1:

Inositol-requiring ER-to-nucleus signal kinase 1

PERK:

Protein kinase-like ER kinase

GRP94:

Glucose-regulated protein 94

QSAR:

Quantitative structure–activity relationship

MD:

Molecular dynamics

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

ROS:

Reactive oxygen species

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

MDCK:

Madin–Darby canine kidney cells

fs:

Femtosecond

ns:

Nanosecond

References

  1. Hetz, C. (2012). The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13(2), 89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  2. Yoo, Y. S., Han, H. G., & Jeon, Y. J. (2017). Unfolded protein response of the endoplasmic reticulum in tumor progression and immunogenicity. Oxidative Medicine and Cellular Longevity, 2017, 2969271. https://doi.org/10.1155/2017/2969271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ni, M., & Lee, A. S. (2007). ER chaperones in mammalian development and human diseases. FEBS Letters, 581(19), 3641–3651. https://doi.org/10.1016/j.febslet.2007.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schönthal, A. H. (2012). Endoplasmic reticulum stress: Its role in disease and novel prospects for therapy. Scientifica (Cairo). https://doi.org/10.6064/2012/857516

    Article  PubMed  Google Scholar 

  5. Calamini, B., & Morimoto, R. I. (2012). Protein homeostasis as a therapeutic target for diseases of protein conformation. Current Topics in Medicinal Chemistry, 12(22), 2623–2640. https://doi.org/10.2174/1568026611212220014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gestwicki, J. E., & Garza, D. (2012). Protein quality control in neurodegenerative disease. Progress in Molecular Biology and Translational Science, 107, 327–353. https://doi.org/10.1016/B978-0-12-385883-2.00003-5

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J. J., Genereux, J. C., & Wiseman, R. L. (2015). Endoplasmic reticulum quality control and systemic amyloid disease: Impacting protein stability from the inside out. IUBMB Life, 67(6), 404–413. https://doi.org/10.1002/iub.1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plate, L., Cooley, C. B., Chen, J. J., Paxman, R. J., Gallagher, C. M., Madoux, F., Genereux, J. C., Dobbs, W., Garza, D., Spicer, T. P., Scampavia, L., Brown, S. J., Rosen, H., Powers, E. T., Walter, P., Hodder, P., Wiseman, R. L., & Kelly, J. W. (2016). Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife, 5, e15550. https://doi.org/10.7554/eLife.15550

    Article  PubMed  PubMed Central  Google Scholar 

  9. Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., … Samali, A. (2019). Endoplasmic reticulum stress signaling—from basic mechanisms to clinical applications. FEBS Journal, 286(2), 241–278. https://doi.org/10.1111/febs.14608

    Article  CAS  PubMed  Google Scholar 

  10. Peng, C., Zhao, F., Li, H., Li, L., Yang, Y., & Liu, F. (2022). HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death & Disease, 13(11), 929. https://doi.org/10.1038/s41419-022-05373-9

    Article  CAS  Google Scholar 

  11. Halperin, L., Jung, J., & Michalak, M. (2014). The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life, 66, 318–326. https://doi.org/10.1002/iub.1272

    Article  CAS  PubMed  Google Scholar 

  12. Ozcan, L., & Tabas, I. (2012). Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual Review of Medicine, 63, 317–328. https://doi.org/10.1146/annurev-med-043010-144749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Argon, Y., & Simen, B. B. (1999). GRP94, an ER chaperone with protein and peptide binding properties. Seminars in Cell & Developmental Biology, 10(5), 495–505. https://doi.org/10.1006/scdb.1999.0320

    Article  CAS  Google Scholar 

  14. Eletto, D., Dersh, D., & Argon, Y. (2010). GRP94 in ER quality control and stress responses. Seminars in Cell & Developmental Biology, 21(5), 479–485. https://doi.org/10.1016/j.semcdb.2010.03.004

    Article  CAS  Google Scholar 

  15. Amankwah, Y. S., Collins, P., Fleifil, Y., Unruh, E., Ruiz Márquez, K. J., Vitou, K., & Kravats, A. N. (2022). Grp94 works upstream of BiP in protein remodeling under heat stress. Journal of Molecular Biology, 434(19), 167762. https://doi.org/10.1016/j.jmb.2022.167762

    Article  CAS  PubMed  Google Scholar 

  16. Huck, J. D., Que, N. L., Immormino, R. M., Shrestha, L., Taldone, T., Chiosis, G., & Gewirth, D. T. (2019). NECA derivatives exploit the paralog-specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90. Journal of Biological Chemistry, 294(44), 16010–16019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soldano, K. L., Jivan, A., Nicchitta, C. V., & Gewirth, D. T. (2003). Structure of the N-terminal domain of GRP94: Basis for ligand specificity and regulation. Journal of Biological Chemistry, 278(48), 48330–48338.

    Article  CAS  PubMed  Google Scholar 

  18. Grandjean, J. M. D., & Wiseman, R. L. (2020). Small molecule strategies to harness the unfolded protein response: Where do we go from here? Journal of Biological Chemistry, 295(46), 15692–15711. https://doi.org/10.1074/jbc.REV120.010218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez-Teuber, V., Albert-Gasco, H., Auyeung, V. C., Papa, F. R., Mallucci, G. R., & Hetz, C. (2019). Small molecules to improve ER proteostasis in disease. Trends in Pharmacological Sciences, 40(9), 684–695. https://doi.org/10.1016/j.tips.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Ernst, J. T., Liu, M., Zuccola, H., Neubert, T., Beaumont, K., Turnbull, A., Kallel, A., Vought, B., & Stamos, D. (2014). Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity-Implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorganic & Medicinal Chemistry Letters, 24(1), 204–208. https://doi.org/10.1016/j.bmcl.2013.11.036

    Article  CAS  Google Scholar 

  21. Schrödinger (2018) LigPrep. Schrödinger, LLC, New York

  22. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A Force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. J., Zhang, J., Wang, S. Q., Xu, W. R., Cheng, X. C., & Wang, R. L. (2014). Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. Drug Design Development and Therapy, 8, 2255–2262. https://doi.org/10.2147/DDDT.S70383

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, W. Y., Ma, Y., Li, H. X., Lu, X. H., Du, S., Ma, Y. C., Zhou, L., & Wang, R. L. (2020). Scaffold-based selective SHP2 inhibitors design using core hopping, molecular docking, biological evaluation and molecular simulation. Bioorganic Chemistry, 105, 104391. https://doi.org/10.1016/j.bioorg.2020.104391

    Article  CAS  PubMed  Google Scholar 

  25. Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6

    Article  CAS  PubMed  Google Scholar 

  26. Vanajothi, R., Hemamalini, V., Jeyakanthan, J., & Premkumar, K. (2020). Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. Journal of Biomolecular Structure Dynamics, 38(9), 2800–2808. https://doi.org/10.1080/07391102.2019.1640132

    Article  CAS  PubMed  Google Scholar 

  27. Ding, Y. L., Lyu, Y. C., & Leong, M. K. (2017). In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Toxicology In Vitro, 40, 102–114. https://doi.org/10.1016/j.tiv.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  28. Drwal, M. N., & Griffith, R. (2013). Combination of ligand- and structure-based methods in virtual screening. Drug Discovery Today Technologies, 10(3), e395-401. https://doi.org/10.1016/j.ddtec.2013.02.002

    Article  PubMed  Google Scholar 

  29. Wang, Y., Feng, S., Gao, H., & Wang, J. (2020). Computational investigations of gram-negative bacteria phosphopantetheine adenylyltransferase inhibitors using 3D-QSAR, molecular docking and molecular dynamic simulations. Journal of Biomolecular Structure Dynamics, 38(5), 1435–1447. https://doi.org/10.1080/07391102.2019.1608305

    Article  CAS  PubMed  Google Scholar 

  30. Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Research, 40(Web Server issue), W409–W414. https://doi.org/10.1093/nar/gks378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koes, D. R., Pabon, N. A., Deng, X., Phillips, M. A., & Camacho, C. J. (2015). A Teach-discover-treat application of zincpharmer: an online interactive pharmacophore modeling and virtual screening tool. PLoS ONE, 10(8), e0134697. https://doi.org/10.1371/journal.pone.0134697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  33. Ntie-Kang, F. (2013). An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 30(2), 353. https://doi.org/10.1186/2193-1801-2-353

    Article  CAS  Google Scholar 

  34. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  35. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Science and Reports, 7, 42717. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  36. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236.

    Article  CAS  Google Scholar 

  37. Mohankumar, T., Chandramohan, V., Lalithamba, H. S., Jayaraj, R. L., Kumaradhas, P., Sivanandam, M., & Elangovan, N. (2020). Design and molecular dynamic investigations of 7, 8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Scientific Reports, 10(1), 1–10.

    Google Scholar 

  38. Singh, K., & Muthusamy, K. (2013). Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT1 and ETA receptor antagonists. Acta Pharmacologica Sinica, 34, 1592–1606. https://doi.org/10.1038/aps.2013.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasala, C., Katari, S. K., Nalamolu, R. M., Aparna, R. B., & Amineni, U. (2019). Integration of core hopping, quantum-mechanics, molecular mechanics coupled binding-energy estimations and dynamic simulations for fragment-based novel therapeutic scaffolds against Helicobacter pylori strains. Computational Biology and Chemistry. https://doi.org/10.1016/j.compbiolchem

    Article  PubMed  Google Scholar 

  40. Bhansali, S., & Kulkarni, V. M. (2014). Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: pyridopyridazin-6-ones (part Research and Reports in Medicinal Chemistry). Research and Reports in Medicinal Chemistry, 4, 1–21.

    Google Scholar 

  41. Rodríguez, D., Gao, Z. G., Moss, S. M., Jacobson, K. A., & Carlsson, J. (2015). Molecular docking screening using agonist-bound GPCR structures: Probing the A2A adenosine receptor. Journal of Chemical Information and Modeling, 55(3), 550–563. https://doi.org/10.1021/ci500639g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mishra, S., & Dahima, R. (2019). In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SwissADME predictor. Journal of Drug Delivery Therapeutics, 9, 366–369. https://doi.org/10.22270/JDDT.V9I2-S.2710

    Article  Google Scholar 

  43. Tosh, D. K., Brackett, C. M., Jung, Y. H., Gao, Z. G., Banerjee, M., Blagg, B. S. J., & Jacobson, K. A. (2021). Biological Evaluation of 5’-(N-Ethylcarboxamido)adenosine analogues as Grp94-selective inhibitors. ACS Medicinal Chemistry Letters, 12(3), 373–379. https://doi.org/10.1021/acsmedchemlett.0c00509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marzec, M., Eletto, D., & Argon, Y. (2012). GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochimica et Biophysica Acta, 1823(3), 774–787. https://doi.org/10.1016/j.bbamcr.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  45. Wassenberg, J. J., Reed, R. C., & Nicchitta, C. V. (2000). Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. II. Ligand-mediated activation of GRP94 molecular chaperone and peptide binding activity. Journal of Biological Chemistry, 275(30), 22806–22814. https://doi.org/10.1074/jbc.M001476200

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, R., Leung, E., Grüner, S., Schapira, M., & Houry, W. A. (2010). Tamoxifen enhances the Hsp90 molecular chaperone ATPase activity. PLoS ONE, 5(4), e9934. https://doi.org/10.1371/journal.pone.0009934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, H., Yang, J., Li, L., Shi, W., Yuan, X., & Wu, L. (2016). The natural occurring compounds targeting endoplasmic reticulum stress. Evid Based Complement Alternat Med., 2016, 7831282. https://doi.org/10.1155/2016/7831282

    Article  PubMed  PubMed Central  Google Scholar 

  48. da Correia, S. D., Valentão, P., Andrade, P. B., & Pereira, D. M. (2022). A Pipeline for natural small molecule inhibitors of endoplasmic reticulum stress. Frontiers in Pharmacology, 13, 956154. https://doi.org/10.3389/fphar.2022.956154

    Article  CAS  Google Scholar 

  49. Conn, P. Michael. (2011). The Unfolded Protein Response and Cellular Stress Part C. In: Inagi, R. (eds), Inhibitors of Advanced Glycation and Endoplasmic Reticulum Stress, (1st ed., 20:361–377). San Diego, Academic Press, an imprint of Elsevier

  50. Hammad, A. S., Ravindran, S., Khalil, A., & Munusamy, S. (2017). Structure-activity relationship of piperine and its synthetic amide analogs for therapeutic potential to prevent experimentally induced ER stress in vitro. Cell Stress and Chaperones, 22(3), 417–428. https://doi.org/10.1007/s12192-017-0786-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu, R. H., Tsai, C. W., Liu, S. P., Chiu, S. C., Chen, Y. C., Chiang, Y. T., Kuo, Y. H., Shyu, W. C., & Lin, S. Z. (2022). Neuroprotective capability of narcissoside in 6-OHDA-exposed Parkinson’s disease Models through enhancing the MiR200a/Nrf-2/GSH axis and mediating MAPK/Akt associated signaling pathway. Antioxidants (Basel)., 11(11), 2089. https://doi.org/10.3390/antiox11112089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hiramitsu, M., Shimada, Y., Kuroyanagi, J., Inoue, T., Katagiri, T., Zang, L., Nishimura, Y., Nishimura, N., & Tanaka, T. (2014). Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Science and Reports, 15(4), 3708. https://doi.org/10.1038/srep03708

    Article  CAS  Google Scholar 

  53. Wei, L., Zhao, C., Dong, S., Yao, S., Ji, B., Zhao, B., Liu, Z., Liu, X., & Wang, Y. (2020). Secoisolariciresinol diglucoside alleviates hepatic lipid metabolic misalignment involving the endoplasmic reticulum-mitochondrial axis. Food & Function, 11(5), 3952–3963. https://doi.org/10.1039/d0fo00124d

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Department of Biotechnology (DBT), Ministry of Science and Technology, New Delhi, India for providing the necessary research support to carry out this study (Ref: BT/PR30828/MED/97/434/2018 dated 26.09.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemamalini Vedagiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarak, S.J., Gupta, S. & Vedagiri, H. Scaffold Hopping and Screening for Potent Small Molecule Agonists for GRP94: Implications to Alleviate ER Stress-Associated Pathogenesis. Mol Biotechnol 66, 737–755 (2024). https://doi.org/10.1007/s12033-023-00685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00685-3

Keywords

Navigation