Skip to main content
Log in

Potassium Phosphite Activates Components Associated with Constitutive Defense Responses in Coffea arabica Cultivars

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Phosphites have been used as inducers of resistance, activating the defense of plants and increasing its ability to respond to the invasion of the pathogen. However, the mode of action of phosphites in defense responses has not yet been fully elucidated. The objective of this study was to evaluate the effect of potassium phosphite (KPhi) in coffee cultivars with different levels of resistance to rust to clarify the mechanism by which KPhi activates the constitutive defense of plants. To this end, we studied the expression of genes and the activity of enzymes involved in the defense pathway of salicylic acid (SA) and reactive oxygen species (ROS), in addition to the levels of total soluble phenolic compounds and soluble lignin. Treatment with KPhi induced constitutive defense responses in cultivars resistant and susceptible to rust. The results suggest that KPhi acts in two parallel defense pathways, SA and ROS, which are essential for the induction of systemic acquired resistance (SAR) when activated simultaneously. The activation of the mechanisms associated with defense routes demonstrates that KPhi is a potential inducer of resistance in coffee plants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All the data from this study are available in the article and in the supplementary material.

References

  1. Companhia Nacional de Abastecimento - CONAB. (2022). Acompanhamento da safra brasileira de café, Brasília, DF, v.9 safra 2022, n. 2, maio, 2022.

  2. United States Department of Agriculture - USDA. (2022). Coffee: World Markets and Trade. 2022. Retrieved June 29, 2022, from https://www.fas.usda.gov/data/coffee-world-markets-and-trade.

  3. Talhinhas, P., Batista, D., Diniz, I., Vieira, A., Silva, D. N., Loureiro, A., Silva, M. D. C., et al. (2017). The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Molecular Plant Pathology, 18(8), 1039–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zambolim, L. (2016). Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology, 41(1), 1–8.

    Article  Google Scholar 

  5. Resende, M. L. V., Pozza, E. A., Reichel, T., & Botelho, D. M. S. (2021). Strategies for coffee leaf rust management in organic crop systems. Agronomy, 11(9), 1865.

    Article  Google Scholar 

  6. Rainforest Alliance. (2021). Anexo S7: Gestão de Pesticidas, versão 1.2, jul. 2021. Retrieved December 10, 2021, from https://www.rainforest-alliance.org/wp-content/uploads/2020/06/Annex-7-Pesticides-Management_PT.pdf

  7. Brasil. Resolução-RE n°165, de 29 de agosto de. (2003). Diretoria Colegiada da Agência Nacional de Vigilância Sanitária do Ministério da Saúde. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 02 set. 2003. Seção, 1, 48–50.

    Google Scholar 

  8. Oliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152–158.

    Article  CAS  Google Scholar 

  9. Costa, B. H. G., de Resende, M. L. V., Ribeiro Júnior, P. M., Mathioni, S. M., Pádua, M. A., & da Silva Júnior, M. B. (2014). Suppression of rust and brown eye spot diseases on coffee by phosphites and by-products of coffee and citrus industries. Journal of Phytopathology, 162(10), 635–642.

    Article  CAS  Google Scholar 

  10. Monteiro, A. C. A., de Resende, M. L. V., Valente, T. C. T., Ribeiro Junior, P. M., Pereira, V. F., da Costa, J. R., & da Silva, J. A. G. (2016). Manganese phosphite in coffee defence against Hemileia vastatrix, the coffee rust fungus: Biochemical and Molecular Analyses. Journal of Phytopathology, 164(11–12), 1043–1053.

    Article  CAS  Google Scholar 

  11. Silva, J. A., Resende, M. L., Monteiro, A. C., Pádua, M. A., Guerra-Guimarães, L., Medeiros, F. L., Botelho, D. M., et al. (2019). Resistance inducers applied alone or in association with fungicide for the management of leaf rust and brown eye spot of coffee under field conditions. Journal of Phytopathology, 167(7–8), 430–439.

    Article  CAS  Google Scholar 

  12. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  13. Massoud, K., Barchietto, T., Le Rudulier, T., Pallandre, L., Didierlaurent, L., Garmier, M., Saindrenan, P., et al. (2012). Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiology, 159(1), 286–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  15. Brodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M. A., Shokat, K. M., Mundy, J., et al. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid-and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47(4), 532–546.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370–7390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Brien, J. A., Daudi, A., Butt, V. S., & Bolwell, G. P. (2012). Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta, 236(3), 765–779.

    Article  PubMed  Google Scholar 

  18. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., & Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2(84), 45.

    Article  Google Scholar 

  19. Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholarly Research Notices, 2013, 1.

    Google Scholar 

  20. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.

    Article  Google Scholar 

  21. Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.

    Article  CAS  PubMed  Google Scholar 

  23. Shu-Hsien, H., Chih-Wen, Y., & Lin, C. H. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, 46, 1.

    Google Scholar 

  24. Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4(6), 493–496.

    Article  CAS  Google Scholar 

  25. Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7), 935–944.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, J., Mohan, R., Zhang, Y., Li, M., Chen, H., Palmer, I. A., Fu, Z. Q., et al. (2019). NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiology, 181(1), 289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  28. Barsalobres-Cavallari, C. F., Petitot, A. S., Severino, F. E., Maia, I. G., & Fernandez, D. (2013). Host response profiling to fungal infection: molecular cloning, characterization and expression analysis of NPR1 gene from coffee (Coffea arabica).

  29. Reichel, T., de Resende, M. L. V., Monteiro, A. C. A., Freitas, N. C., & dos Santos Botelho, D. M. (2021). Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. Molecular Biotechnology, 1, 1–15.

    Google Scholar 

  30. Fino, J., Figueiredo, A., Loureiro, A., Gichuru, E. K., Várzea, V., Silva, M. C., ... & Paulo, O. S. (2015). Transcriptional profiling of compatible and incompatible Coffee-Colletotrichum kahawae interactions through RNA-Seq analysis. In Proceedings of 25th International Conference on Coffee Science (ASIC), Armenia, Colombia.

  31. Diniz, I., Figueiredo, A., Loureiro, A., Batista, D., Azinheira, H., Várzea, V., Silva, M. D. C., et al. (2017). A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS ONE, 12(5), e0178159.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35, 71–74.

    Article  Google Scholar 

  33. Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75–84.

    Article  CAS  Google Scholar 

  34. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 1–12.

    Article  Google Scholar 

  35. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), e45–e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biemelt, S., Keetman, U., & Albrecht, G. (1998). Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiology, 116(2), 651–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880.

    CAS  Google Scholar 

  38. Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  41. Spanos, G. A., & Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565–1571.

    Article  CAS  Google Scholar 

  42. Doster, M., & Bostock, R. M. (1988). Quantification of lignin formation in almond bark in response to wounding and infection by Phytophthora species. Phytopathology, 78, 473–477.

    Article  CAS  Google Scholar 

  43. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, from https://www.R-project.org/.

  44. Ferreira, E. B., Cavalcanti, P. P., & Nogueira, D. A. (2014). ExpDes: An R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

    Article  Google Scholar 

  45. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509–515.

    Article  CAS  PubMed  Google Scholar 

  46. Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guzzo, S. D., Castro, R. D., Kida, K., & Martins, E. M. F. (2001). Ação protetora do acibenzolar-S-methyl em plantas de cafeeiro contra ferrugem. Arquivos do Instituto Biológico, 68(1), 89–94.

    Google Scholar 

  48. Guzzo, S. D., Harakava, R., & Tsai, S. M. (2009). Identification of coffee genes expressed during systemic acquired resistance and incompatible interaction with Hemileia vastatrix. Journal of Phytopathology, 157(10), 625–638.

    Article  CAS  Google Scholar 

  49. Verhagen, B. W., Van Loon, L. C., & Pieterse, C. M. (2006). Induced disease resistance signaling in plants.

  50. Eshraghi, L. E., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. S., & O’Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086–1095.

    Article  CAS  Google Scholar 

  51. Ratjen, A. M., & Gerendás, J. (2009). A critical assessment of the suitability of phosphite as a source of phosphorus. Journal of Plant Nutrition and Soil Science, 172(6), 821–828.

    Article  CAS  Google Scholar 

  52. Resende, M. L. V., Salgado, S. M., & Chaves, Z. M. (2003). Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatologia Brasileira, 28, 123–130.

    Article  Google Scholar 

  53. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521–530.

    Article  CAS  Google Scholar 

  54. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  55. Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fotopoulos, V., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562–565.

    Article  CAS  PubMed  Google Scholar 

  57. Feys, B. J., Moisan, L. J., Newman, M. A., & Parker, J. E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. The EMBO Journal, 20(19), 5400–5411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists, 9, 1.

    Google Scholar 

  59. Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: The EDS1 regulatory node. Current Opinion in Plant Biology, 8(4), 383–389.

    Article  CAS  PubMed  Google Scholar 

  60. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Mundy, J., et al. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103(7), 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  61. Cao, H., Li, X., & Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences, 95(11), 6531–6536.

    Article  CAS  Google Scholar 

  62. Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., & Dong, X. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell, 137(5), 860–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gamir, J., Darwiche, R., Van’t Hof, P., Choudhary, V., Stumpe, M., Schneiter, R., & Mauch, F. (2017). The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal, 89(3), 502–509.

    Article  CAS  PubMed  Google Scholar 

  64. Silva, M. C., Nicole, M., Rijo, L., Geiger, J. P., & Rodrigues, C. J., Jr. (1999). Cytochemical aspects of the plant–rust fungus interface during the compatible interaction Coffea arabica (cv. Caturra)–Hemileia vastatrix (race III). International Journal of Plant Sciences, 160(1), 79–91.

    Article  Google Scholar 

  65. Anil Kumar, S., Hima Kumari, P., Shravan Kumar, G., Mohanalatha, C., & Kavi Kishor, P. (2015). Osmotin: A plant sentinel and a possible agonist of mammalian adiponectin. Frontiers in Plant Science, 6, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borden, S., & Higgins, V. J. (2002). Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum. Physiological and Molecular Plant Pathology, 61(4), 227–236.

    Article  CAS  Google Scholar 

  67. Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5, 358.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Silva, M. C., Guerra-Guimarães, L., Loureiro, A., & Nicole, M. R. (2008). Involvement of peroxidases in the coffee resistance to orange rust (Hemileia vastatrix). Physiological and Molecular Plant Pathology, 72(1–3), 29–38.

    Article  CAS  Google Scholar 

  69. Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends in Plant Science, 12(1), 29–36.

    Article  CAS  PubMed  Google Scholar 

  70. Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531.

    Article  CAS  PubMed  Google Scholar 

  71. Ramiro, D. A., Escoute, J., Petitot, A. S., Nicole, M., Maluf, M. P., & Fernandez, D. (2009). Biphasic haustorial differentiation of coffee rust (Hemileia vastatrix race II) associated with defence responses in resistant and susceptible coffee cultivars. Plant Pathology, 58(5), 944–955.

    Article  CAS  Google Scholar 

  72. Guerra-Guimarães, L., Cardoso, S., Martins, I., Loureiro, A., Bernardes, A. S., Varzea, V., & Silva, M. C. (2009). Differential induction of superoxide dismutase in Coffea arabicaHemileia vastatrix interactions. In: Proceedings of the 22th International Conference on Coffee Science (ASIC2008) (Campinas).

  73. Couttolenc-Brenis, E., Carrión, G. L., Villain, L., Ortega-Escalona, F., Ramírez-Martínez, D., Mata-Rosas, M., & Méndez-Bravo, A. (2020). Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ, 8, e8345.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, P., et al. (2014). Free radicals mediate systemic acquired resistance. Cell Reports, 7(2), 348–355.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Bárbara Alves dos Santos Ciscon and Matheus Henrique de Brito Pereira for their help in conducting the experiment.

Funding

This study was funded in part by the Brazilian Federal Agency for the Improvement of Higher Education Personnel (CAPES), Financial Code 001; National Council for Scientific and Technological Development (CNPq); the Minas Gerais Research Foundation (FAPEMIG) and the National Institute of Coffee Science and Technology (INCT-Café).

Author information

Authors and Affiliations

Authors

Contributions

Conception of the study: PFPS, MLVR, NCF, MLS, TR, and DMSB. Preparation of plant material: PFPS, MLS, NCF, and DMSB. RT-qPCR extractions: PFPS, NCF, and MLS. RT-qPCR: PFPS, NCF, and TR analyses. Analysis of reference genes: PFPS and TR. Enzymatic analyses and secondary metabolites: PFPS, TR, and DMSB. Statistical analyses: PFPS, EBF, and DMSB. Graphs: PFPS, EBF, and TR. Analysis and interpretation of data: PFPS, TR, and NCF. Writing of the article: PFPS. Critical review of the article: MLVR, NCF, TR, DMSB, and MLS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mário Lúcio Vilela de Resende.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 90 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Fátima Pereira Silva, P., de Resende, M.L.V., Reichel, T. et al. Potassium Phosphite Activates Components Associated with Constitutive Defense Responses in Coffea arabica Cultivars. Mol Biotechnol 65, 1777–1795 (2023). https://doi.org/10.1007/s12033-023-00683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00683-5

Keywords

Navigation