Abstract
The presence of allergen-specific IgE in serum is a biomarker for allergic disease. Specific IgE antibodies for research and diagnostics, however, remain scarce. In contrast to prototypic antibodies, camelid species have evolved single domains as moiety for antigen recognition. These so-called nanobodies represent a versatile platform for the development of diagnostic and therapeutic approaches. In this study, we aimed for generating nanobodies and derived IgE formats from an extract-shaped immune repertoire. Timothy grass pollen represents a complex, but well-defined mixture of individual allergens. Therefore, a repertoire library from a timothy grass pollen extract immunised llama was established. The selection by phage display yielded 3 nanobodies with immunoreactivity to the extract. IgE-like nanobody-based human IgE (nb-hIgE) antibodies were produced in mammalian cells and assessed in different immunoassays and commercial platforms. Immunoblotting and diagnostic ImmunoCap analysis of single timothy grass pollen allergens identified the major allergens Phl p 6 and Phl p 4 as targets. Assessment of immunoreactivity further documented significant molecular cross-reactivity with pollen extract of different grass species and variant presence of allergens within extracts of Pooideae grasses. In summary, our study shows that extract-based immunisation enables the generation of allergen-specific nanobodies and derived nb-hIgE formats linking nanobody technologies with allergological applications.
Similar content being viewed by others
Data availability
Data used and analysed in this study are available from the authors on reasonable request.
References
Finkelman, F. D., Boyce, J. A., Vercelli, D., & Rothenberg, M. E. (2010). Key advances in mechanisms of asthma, allergy, and immunology in 2009. The Journal of Allergy and Clinical Immunology, 125, 312–318.
Gould, H. J., & Sutton, B. J. (2008). IgE in allergy and asthma today. Nature reviews. Immunology, 8, 205–217.
Chang, T. W. (2000). The pharmacological basis of anti-IgE therapy. Nature Biotechnology, 18, 157–162.
Clement, M. J., Fortune, A., Phalipon, A., Marcel-Peyre, V., Simenel, C., Imberty, A., Delepierre, M., & Mulard, L. A. (2006). Toward a better understanding of the basis of the molecular mimicry of polysaccharide antigens by peptides: The example of Shigella flexneri 5a. Journal of Biological Chemistry, 281, 2317–2332.
Andersson, K., & Lidholm, J. (2003). Characteristics and immunobiology of grass pollen allergens. International Archives of Allergy and Immunology, 130, 87–107.
Dewitt, A. M., Andersson, K., Peltre, G., & Lidholm, J. (2006). Cloning, expression and immunological characterization of full-length timothy grass pollen allergen Phl p 4, a berberine bridge enzyme-like protein with homology to celery allergen Api g 5. Clinical and Experimental Allergy, 36, 77–86.
Platts-Mills, T. A., Hilger, C., Jappe, U., Hage, M., Gadermaier, G., Spillner, E., Jonas, L., Keshavarz, B., Aalberse, R. C., Van Ree, R., Goodman, R. E., & Pomes, A. (2021). Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy, 76, 2383.
Plum, M., Tjerrild, L., Raiber, T., Bantleon, F., Bantleon, S., Miehe, M., Jabs, F., Seismann, H., Mobs, C., Pfutzner, W., Jakob, T., Andersen, G. R., & Spillner, E. (2022). Structural and functional analyses of antibodies specific for modified core N-glycans suggest a role in TH 2 responses. Allergy, 78, 121–130.
Aalberse, R. C., Koshte, V., & Clemens, J. G. (1981). Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and Hymenoptera venom. The Journal of Allergy and Clinical Immunology, 68, 356–364.
Kohler, J., Blank, S., Muller, S., Bantleon, F., Frick, M., Huss-Marp, J., Lidholm, J., Spillner, E., & Jakob, T. (2014). Component resolution reveals additional major allergens in patients with honeybee venom allergy. Journal of Allergy and Clinical Immunology, 133, 1383–1389.
Akdis, C. A., & Akdis, M. (2014). Mechanisms of immune tolerance to allergens: Role of IL-10 and Tregs. The Journal of Clinical Investigation, 124, 4678–4680.
Boonpiyathad, T., Meyer, N., Moniuszko, M., Sokolowska, M., Eljaszewicz, A., Wirz, O. F., Tomasiak-Lozowska, M. M., Bodzenta-Lukaszyk, A., Ruxrungtham, K., & van de Veen, W. (2017). High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy, 72, 407–415.
Meiler, F., Zumkehr, J., Klunker, S., Ruckert, B., Akdis, C. A., & Akdis, M. (2008). In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. Journal of Experimental Medicine, 205, 2887–2898.
Shamji, M., & Durham, S. (2017). Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. The Journal of Allergy and Clinical Immunology, 140, 1485–1498.
Shamji, M. H., Ljorring, C., Francis, J. N., Calderon, M. A., Larche, M., Kimber, I., Frew, A. J., Ipsen, H., Lund, K., Wurtzen, P. A., & Durham, S. R. (2012). Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy, 67, 217–226.
Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., Bendahman, N., & Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363, 446–448.
Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., & Winter, G. (1989). Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature, 341, 544–546.
Konning, D., Zielonka, S., Grzeschik, J., Empting, M., Valldorf, B., Krah, S., Schroter, C., Sellmann, C., Hock, B., & Kolmar, H. (2016). Camelid and shark single domain antibodies: Structural features and therapeutic potential. Current Opinion in Structural Biology, 45, 10–16.
Zavrtanik, U., Lukan, J., Loris, R., Lah, J., & Hadzi, S. (2018). Structural basis of epitope recognition by heavy-chain camelid antibodies. Journal of Molecular Biology, 430, 4369–4386.
Detalle, L., Stohr, T., Palomo, C., Piedra, P. A., Gilbert, B. E., Mas, V., Millar, A., Power, U. F., Stortelers, C., Allosery, K., Melero, J. A., & Depla, E. (2015). Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrobial agents and chemotherapy, 60, 6–13.
Fahy, J. V., Cockcroft, D. W., Boulet, L. P., Wong, H. H., Deschesnes, F., Davis, E. E., Ruppel, J., Su, J. Q., & Adelman, D. C. (1999). Effect of aerosolized anti-IgE (E25) on airway responses to inhaled allergen in asthmatic subjects. American Journal of Respiratory and Critical Care Medicine, 160, 1023–1027.
Braren, I., Blank, S., Seismann, H., Deckers, S., Ollert, M., Grunwald, T., & Spillner, E. (2007). Generation of human monoclonal allergen-specific IgE and IgG antibodies from synthetic antibody libraries. Clinical Chemistry, 53, 837–844.
Hecker, J., Diethers, A., Etzold, S., Seismann, H., Michel, Y., Plum, M., Bredehorst, R., Blank, S., Braren, I., & Spillner, E. (2011). Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the timothy grass major allergen Phl p 5a. Molecular Immunology, 48, 1236–1244.
Hecker, J., Diethers, A., Schulz, D., Sabri, A., Plum, M., Michel, Y., Mempel, M., Ollert, M., Jakob, T., Blank, S., Braren, I., & Spillner, E. (2012). An IgE epitope of Bet v 1 and fagales PR10 proteins as defined by a human monoclonal IgE. Allergy, 67, 1530–1537.
Plum, M., Michel, Y., Wallach, K., Raiber, T., Blank, S., Bantleon, F. I., Diethers, A., Greunke, K., Braren, I., Hackl, T., Meyer, B., & Spillner, E. (2011). Close-up of the immunogenic alpha1,3-galactose epitope as defined by a monoclonal chimeric immunoglobulin E and human serum using saturation transfer difference (STD) NMR. Journal of Biological Chemistry, 286, 43103–43111.
Aagaard, J. B., Sivelle, C., Fischer, M., Byskov, K., Laursen, N. S., Pfutzner, W., Jakob, T., Mobs, C., Miehe, M., & Spillner, E. (2022). Nanobody-based human antibody formats act as IgE surrogate in hymenoptera venom allergy. Allergy, 77, 2859–2862.
Jabs, F., Plum, M., Laursen, N. S., Jensen, R. K., Molgaard, B., Miehe, M., Mandolesi, M., Rauber, M. M., Pfutzner, W., Jakob, T., Mobs, C., Andersen, G. R., & Spillner, E. (2018). Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcepsilonRI interaction. Nature Communications, 9, 7.
Zettl, I., Ivanova, T., Zghaebi, M., Rutovskaya, M. V., Ellinger, I., Goryainova, O., Kollarova, J., Villazala-Merino, S., Lupinek, C., Weichwald, C., Drescher, A., Eckl-Dorna, J., Tillib, S. V., & Flicker, S. (2022). Generation of high affinity ICAM-1-specific nanobodies and evaluation of their suitability for allergy treatment. Frontiers in Immunology, 13, 1022418.
Akiba, H., Tamura, H., Kiyoshi, M., Yanaka, S., Sugase, K., Caaveiro, J. M. M., & Tsumoto, K. (2019). Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Scientific Reports, 9, 15481.
Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., Zhu, L., Zhang, Y., He, J., Fan, X., & Jin, T. (2019). Screening of nanobody specific for peanut major allergen Ara h 3 by phage display. Journal of Agricultural and Food Chemistry, 67, 11219–11229.
Hu, Y., Wu, S., Wang, Y., Lin, J., Sun, Y., Zhang, C., Gu, J., Yang, F., Lv, H., Ji, X., Zhang, Y., Muyldermans, S., & Wang, S. (2021). Unbiased immunization strategy yielding specific nanobodies against macadamia allergen of vicilin-like protein for immunoassay development. Journal of Agricultural and Food Chemistry, 69, 5178–5188.
Zettl, I., Ivanova, T., Strobl, M. R., Weichwald, C., Goryainova, O., Khan, E., Rutovskaya, M. V., Focke-Tejkl, M., Drescher, A., Bohle, B., Flicker, S., & Tillib, S. V. (2021). Isolation of nanobodies with potential to reduce patients IgE binding to Bet v 1 (68/100 characters). Allergy, 77, 1751–1760.
Matricardi, P. M., Kleine-Tebbe, J., Hoffmann, H. J., Valenta, R., Hilger, C., Hofmaier, S., Aalberse, R. C., Agache, I., Asero, R., Ballmer-Weber, B., Barber, D., Beyer, K., Biedermann, T., Bilo, M. B., Blank, S., Bohle, B., Bosshard, P. P., Breiteneder, H., Brough, H. A., et al. (2016). EAACI molecular allergology user’s guide. Pediatric Allergy and Immunology, 27(Suppl 23), 1–250.
Offermann, N., Plum, M., Hubner, U., Rathloff, K., Braren, I., Fooke, M., & Spillner, E. (2016). Human serum substitution by artificial sera of scalable allergen reactivity based on polyclonal antibodies and chimeras of human FcgammaRI and IgE domains. Allergy, 71, 1794–1799.
Wood, R. A., Segall, N., Ahlstedt, S., & Williams, P. B. (2007). Accuracy of IgE antibody laboratory results. Annals of Allergy, Asthma & Immunology, 99, 34–41.
Popescu, F. D. (2014). Molecular biomarkers for grass pollen immunotherapy. World Journal of Methodology, 4, 26–45.
Vrtala, S., Fischer, S., Grote, M., Vangelista, L., Pastore, A., Sperr, W. R., Valent, P., Reichelt, R., Kraft, D., & Valenta, R. (1999). Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from Timothy grass (Phleum pratense) pollen. The Journal of Immunology, 163, 5489–5496.
Zafred, D., Nandy, A., Pump, L., Kahlert, H., & Keller, W. (2013). Crystal structure and immunologic characterization of the major grass pollen allergen Phl p 4. The Journal of Allergy and Clinical Immunology, 132, 696–703.
Westman, M., Aberg, K., Apostolovic, D., Lupinek, C., Gattinger, P., Mittermann, I., Andersson, N., Melen, E., Bergstrom, A., Anto, J. M., Bousquet, J., Valenta, R., Wickman, M., van Hage, M., Mechanisms for the Development of Allergies, c. (2020). Sensitization to grass pollen allergen molecules in a birth cohort-natural Phl p 4 as an early indicator of grass pollen allergy. The Journal of Allergy and Clinical Immunology, 145, 1174–1181.
Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50, W1.
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–1191.
Acknowledgements
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no commercial or financial conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aagaard, J.B., Fischer, M., Lober, J. et al. Extract-Shaped Immune Repertoires as Source for Nanobody-Based Human IgE in Grass Pollen Allergy. Mol Biotechnol 65, 1518–1527 (2023). https://doi.org/10.1007/s12033-023-00664-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-023-00664-8