Skip to main content

Advertisement

Log in

Bacterial Sequencing Reads in Blood Exome Files from Melanoma and Cervical Cancer Patients are Associated with Cancer Recurrence

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacteremia poses great risk for morbidity and mortality for immunocompromised cancer patients. Although the presence of bacteria within solid tumors is gaining greater attention, few studies have analyzed species of bacteria in the blood and their effect on cancer clinical outcomes. Using the Kraken 2 taxonomic profiling tool, we classified bacteria present in blood and primary tumors of cervical cancer and melanoma cases. The Cancer Genome Atlas (TCGA) melanoma blood exome files with Pseudomonas species were found to represent a worse disease-free survival (DFS) probability, while a worse overall survival (OS) result was evidenced for both the TCGA and Moffitt Cancer Center melanoma datasets. Cervical cancer cases with reads representing the Bradyrhizobium genus and Bradyrhizobium sp. BTAi1 found in blood and tumor exome files were found to have lower DFS. Additionally, reduced DFS and OS were observed for cervical cancer cases positive for Bacteroides species including Bacteroides fragilis. This study provides novel evidence and a novel approach for indicating that bacteria in blood is associated with cancer recurrence. These findings may guide the development of more efficient prognostic and screening tools related to bacterial blood infections of melanoma and cervical cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data generated in this study are available in the supporting online material. Any additional information related to these data can be had by emailing the corresponding author.

Abbreviations

BAM:

Binary alignment map

CESC:

Cervical squamous cell cancer

dbGaP:

Database of genotypes and phenotypes

DFS:

Disease-free survival

GDC:

Genomic data commons

KM:

Kaplan–Meier

NCBI:

National Center for Biotechnology Information

OS:

Overall survival

SKCM:

Skin cutaneous melanoma

TCGA:

The cancer genome atlas

WXS:

Whole exome sequence

References

  1. Danai, P. A., Moss, M., Mannino, D. M., & Martin, G. S. (2006). The epidemiology of sepsis in patients with malignancy. Chest, 129(6), 1432–1440. https://doi.org/10.1378/chest.129.6.1432

    Article  PubMed  Google Scholar 

  2. Chrischilles, E. A., Link, B. K., Scott, S. D., Delgado, D. J., & Fridman, M. (2003). Factors associated with early termination of CHOP therapy and the impact on survival among patients with chemosensitive intermediate-grade non-Hodgkin’s lymphoma. Cancer Control, 10(5), 396–403. https://doi.org/10.1177/107327480301000507

    Article  PubMed  Google Scholar 

  3. Cosgrove, S. E., Qi, Y., Kaye, K. S., Harbarth, S., Karchmer, A. W., & Carmeli, Y. (2005). The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: Mortality, length of stay, and hospital charges. Infection Control and Hospital Epidemiology, 26(2), 166–174. https://doi.org/10.1086/502522

    Article  PubMed  Google Scholar 

  4. Rolston, K. V. (2017). Infections in cancer patients with solid tumors: A review. Infectious Disease and Therapy, 6(1), 69–83. https://doi.org/10.1007/s40121-017-0146-1

    Article  Google Scholar 

  5. Orien, S. N., Blijlevens, N. M., Mahfouz, T. H., & Anaissie, E. J. (2003). Infections in patients with hematological cancer: Recent developments. Hematology American Soc Hematol Educ Program., 2003, 438–72. https://doi.org/10.1182/asheducation-2003.1.438

    Article  Google Scholar 

  6. Bochud, P. Y., Eggiman, P., Calandra, T., Van Melle, G., Saghafi, L., & Francioli, P. (1994). Bacteremia due to viridans streptococcus in neutropenic patients with cancer: Clinical spectrum and risk factors. Clinical Infectious Diseases, 18(1), 25–31. https://doi.org/10.1093/clinids/18.1.25

    Article  CAS  PubMed  Google Scholar 

  7. Mikulska, M., Del Bono, V., Bruzzi, P., Raiola, A. M., Gualandi, F., Van Lint, M. T., Bacigalupo, A., & Viscoli, C. (2012). Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection, 40(3), 271–278.

    Article  CAS  PubMed  Google Scholar 

  8. Baier, C., Linke, L., Eder, M., Schwab, F., Chaberny, I. F., Vonberg, R. P., & Ebadi, E. (2020). Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PLoS ONE, 15(1), e0227772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montassier, E., Batard, E., Gastinne, T., Potel, G., & de La Cochetiere, M. F. (2013). Recent changes in bacteremia in patients with cancer: A systematic review of epidemiology and antibiotic resistance. European Journal of Clinical Microbiology and Infectious Diseases, 32(7), 841–850.

    Article  CAS  PubMed  Google Scholar 

  10. Lubwama, M., Phipps, W., Najjuka, C. F., Kajumbula, H., Ddungu, H., Kambugu, J. B., & Bwanga, F. (2019). Bacteremia in febrile cancer patients in Uganda. BMC Research Notes, 12(1), 464.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gudiol, C., Bodro, M., Simonetti, A., Tubau, F., Gonzalez-Barca, E., Cisnal, M., Domingo-Domenech, E., Jimenez, L., & Carratala, J. (2013). Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clinical Microbiology & Infection, 19(5), 474–479.

    Article  CAS  Google Scholar 

  12. Anatoliotaki, M., Valatas, V., Mantadakis, E., Apostolakou, H., Mavroudis, D., Georgoulias, V., Rolston, K. V., Kontoyiannis, D. P., Galanakis, E., & Samonis, G. (2004). Bloodstream infections in patients with solid tumors: Associated factors, microbial spectrum and outcome. Infection, 32(2), 65–71. https://doi.org/10.1007/s15010-004-3049-5

    Article  CAS  PubMed  Google Scholar 

  13. Marin, M., Gudiol, C., Garcia-Vidal, C., Ardanuy, C., & Carratala, J. (2014). Bloodstream infections in patients with solid tumors: Epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine (Baltimore), 93(3), 143–149. https://doi.org/10.1097/MD.000000000000002

    Article  CAS  PubMed  Google Scholar 

  14. Kang, C. I., Song, J. H., Chung, D. R., Peck, K. R., Yeom, J. S., Son, J. S., & Wi, Y. M. (2012). Bloodstream infections in adult patients with cancer: clinical features and pathogenic significance of Staphylococcus aureus bacteremia. Support Care Cancer, 20(10), 2371–8.

    Article  PubMed  Google Scholar 

  15. Taplitz, R. A., Kennedy, E. B., Bow, E. J., Crews, J., Gleason, C., Hawley, D. K., Langston, A. A., Nastoupil, L. J., Rajotte, M., Rolston, K. V., Strasfeld, L., & Flowers, C. R. (2018). Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 36(30), 3043–3054.

    Article  PubMed  Google Scholar 

  16. Nannan Panday, R. S., Wang, S., van de Ven, P. M., Hekker, T. A. M., Alam, N., & Nanayakkara, P. W. B. (2019). Evaluation of blood culture epidemiology and efficiency in a large European teaching hospital. PLoS ONE, 14(3), e0214052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinstein, M. P. (2003). Blood culture contamination: Persisting problems and partial progress. Journal of Clinical Microbiology, 41(6), 2275–2278. https://doi.org/10.1128/JCM.41.6.2275-2278.2003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bacconi, A., Richmond, G. S., Baroldi, M. A., Laffler, T. G., Blyn, L. B., Carolan, H. E., Frinder, M. R., Toleno, D. M., Metzgar, D., Gutierrez, J. R., Massire, C., Rounds, M., Kennel, N. J., Rothman, R. E., Peterson, S., Carroll, K. C., Wakefield, T., Ecker, D. J., & Sampath, R. (2014). Improved sensitivity for molecular detection of bacterial and Candida infections in blood. Journal of Clinical Microbiology, 52(9), 3164–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marlowe, E. M., Hogan, J. J., Hindler, J. F., Andruszkiewicz, I., Gordon, P., & Bruckner, D. A. (2003). Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. Journal of Clinical Microbiology, 41(11), 5127–5133. https://doi.org/10.1128/JCM.41.11.5127-5133.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grumaz, S., Stevens, P., Grumaz, C., Decker, S. O., Weigand, M. A., Hofer, S., Brenner, T., von Haeseler, A., & Sohn, K. (2016). Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Medicine, 8(1), 73.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cancer Genome Atlas N. (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–96.

    Article  Google Scholar 

  22. Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, Buck Institute for Research on A, Canada's Michael Smith Genome Sciences C, Harvard Medical S, Helen FGCC, Research Institute at Christiana Care Health S, HudsonAlpha Institute for B, Ilsbio LLC, Indiana University School of M, Institute of Human V, Institute for Systems B, International Genomics C, Leidos B, Massachusetts General H, McDonnell Genome Institute at Washington U, Medical College of W, Medical University of South C, Memorial Sloan Kettering Cancer C, Montefiore Medical C, NantOmics, National Cancer I, National Hospital AN, National Human Genome Research I, National Institute of Environmental Health S, National Institute on D, Other Communication D, Ontario Tumour Bank LHSC, Ontario Tumour Bank OIfCR, Ontario Tumour Bank TOH, Oregon H, Science U, Samuel Oschin Comprehensive Cancer Institute C-SMC, International SRA, St Joseph's Candler Health S, Eli, Edythe LBIoMIoT, Harvard U, Research Institute at Nationwide Children's H, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins U, University of B, University of Texas MDACC, University of Abuja Teaching H, University of Alabama at B, University of California I, University of California Santa C, University of Kansas Medical C, University of L, University of New Mexico Health Sciences C, University of North Carolina at Chapel H, University of Oklahoma Health Sciences C, University of P, University of Sao Paulo RaPMS, University of Southern C, University of W, University of Wisconsin School of M, Public H, Van Andel Research I, Washington University in St L. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84

  23. Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). Genome project data processing S. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Breitwieser, F. P., & Salzberg, S. L. (2020). Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303–1304. https://doi.org/10.1093/bioinformatics/btz715

    Article  CAS  PubMed  Google Scholar 

  26. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  28. Ustun, C., Young, J. H., Papanicolaou, G. A., Kim, S., Ahn, K. W., Chen, M., Abdel-Azim, H., Aljurf, M., Beitinjaneh, A., Brown, V., Cerny, J., Chhabra, S., Kharfan-Dabaja, M. A., Dahi, P. B., Daly, A., Dandoy, C. E., Dvorak, C. C., Freytes, C. O., Hashmi, S., … Riches, M. (2019). Bacterial blood stream infections (BSIs), particularly post-engraftment BSIs, are associated with increased mortality after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 54(8), 1254–1265.

    Article  PubMed  Google Scholar 

  29. Peters, B. A., Hayes, R. B., Goparaju, C., Reid, C., Pass, H. I., & Ahn, J. (2019). The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology., 28(4), 731–740.

    Article  CAS  Google Scholar 

  30. Patnaik, S. K., Cortes, E. G., Kannisto, E. D., Punnanitinont, A., Dhillon, S. S., Liu, S., & Yendamuri, S. (2021). Lower airway bacterial microbiome may influence recurrence after resection of early-stage non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 161(2), 419–429.

    Article  PubMed  Google Scholar 

  31. Qiao, H., Tan, X. R., Li, H., Li, J. Y., Chen, X. Z., Li, Y. Q., Li, W. F., Tang, L. L., Zhou, G. Q., Zhang, Y., Liang, Y. L., He, Q. M., Zhao, Y., Huang, S. Y., Gong, S., Li, Q., Ye, M. L., Chen, K. L., Sun, Y., … Liu, N. (2022). Association of intratumoral microbiota with prognosis in patients with nasopharyngeal carcinoma from 2 hospitals in China. JAMA Oncology, 8(9), 1301–1309. https://doi.org/10.1001/jamaoncol.2022.2810

    Article  PubMed  PubMed Central  Google Scholar 

  32. Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–72. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  33. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., & Schlemper, R. J. (2001). Helicobacter pylori infection and the development of gastric cancer. The New England Journal of Medicine, 345(11), 784–789. https://doi.org/10.1056/NEJMoa001999

    Article  CAS  PubMed  Google Scholar 

  34. Feng, S. H., Tsai, S., Rodriguez, J., & Lo, S. C. (1999). Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Molecular and Cellular Biology, 19(12), 7995–8002. https://doi.org/10.1128/MCB.19.12.7995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., Quesada, P., Sahin, I., Chandra, V., San Lucas, A., Scheet, P., Xu, H., Hanash, S. M., Feng, L., Burks, J. K., Do, K. A., Peterson, C. B., Nejman, D., Tzeng, C. D., … McAllister, F. (2019). Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, 178(4), 795–806. https://doi.org/10.1016/j.cell.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo, W., Zhang, Y., Guo, S., Mei, Z., Liao, H., Dong, H., Wu, K., Ye, H., Zhang, Y., Zhu, Y., Lang, J., Hu, L., Jin, G., & Kong, X. (2021). Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Communications in Biology, 4(1), 1019.

    Article  CAS  Google Scholar 

  37. Ahmed, N., Ali, Z., Riaz, M., Zeshan, B., Wattoo, J. I., & Aslam, M. N. (2020). Evaluation of antibiotic resistance and virulence genes among clinical isolates of Pseudomonas aeruginosa from cancer patients. Asian Pacific Journal of Cancer Prevention, 21(5), 1333–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siegman-Igra, Y., Ravona, R., Primerman, H., & Giladi, M. (1998). Pseudomonas aeruginosa bacteremia: An analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. International Journal of Infectious Diseases, 2(4), 211–215. https://doi.org/10.1016/s1201-9712(98)90055-8

    Article  CAS  PubMed  Google Scholar 

  39. Maschmeyer, G., & Braveny, I. (2000). Review of the incidence and prognosis of Pseudomonas aeruginosa infections in cancer patients in the 1990s. European Journal of Clinical Microbiology and Infectious Diseases, 19(12), 915–925.

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez, R. M., Hernandez, B. Y., Menor, M., Deng, Y., & Khadka, V. S. (2020). The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing. Computational and Structural Biotechnology Journal, 18, 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gnanasekar, A., Castaneda, G., Iyangar, A., Magesh, S., Perez, D., Chakladar, J., Li, W. T., Bouvet, M., Chang, E. Y., & Ongkeko, W. M. (2021). The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma. Computational and Structural Biotechnology Journal, 19, 1986–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, C., Liu, Y., Gao, W., Pan, Y., Gao, Y., Shen, J., & Xiong, H. (2018). The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Medicine, 7(5), 2172–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haghi, F., Goli, E., Mirzaei, B., & Zeighami, H. (2019). The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer, 19(1), 879.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cheng, W. T., Kantilal, H. K., & Davamani, F. (2020). The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malaysian Journal of Medical Science, 27(4), 9–21.

    Article  Google Scholar 

  45. Anson, L. W., Chau, K., Sanderson, N., Hoosdally, S., Bradley, P., Iqbal, Z., Phan, H., Foster, D., Oakley, S., Morgan, M., Peto, T. E. A., Modernizing Medical Microbiology Informatics Group M, Crook, D. W., & Pankhurst, L. J. (2018). DNA extraction from primary liquid blood cultures for bloodstream infection diagnosis using whole genome sequencing. Journal of Medical Microbiology, 67(3), 347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forde, B. M., Bergh, H., Cuddihy, T., Hajkowicz, K., Hurst, T., Playford, E. G., Henderson, B. C., Runnegar, N., Clark, J., Jennison, A. V., Moss, S., Hume, A., Leroux, H., Beatson, S. A., Paterson, D. L., & Harris, P. N. (2022). Clinical implementation of routine whole-genome sequencing for hospital infection control of multi-drug resistant pathogens. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciac726

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank USF research computing and Ms. Corinne Walters for managing the extensive admin support for obtaining approvals for database access.

Author information

Authors and Affiliations

Authors

Contributions

JUQ: conceptualization; formal analysis; methodology; software; visualization; writing—review and editing. MJD: methodology; software. TIH: resources; methodology; software. JCK: resources; methodology; software. SZ: methodology; software. JED: methodology; software. KJC: methodology; software. GB: project administration; resources; supervision; writing—review and editing.

Corresponding author

Correspondence to George Blanck.

Ethics declarations

Conflict of interest

Authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quach, J.U., Diaz, M.J., Huda, T.I. et al. Bacterial Sequencing Reads in Blood Exome Files from Melanoma and Cervical Cancer Patients are Associated with Cancer Recurrence. Mol Biotechnol 65, 1476–1484 (2023). https://doi.org/10.1007/s12033-023-00663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00663-9

Keywords

Navigation