Skip to main content

Advertisement

Log in

Establishment and Application of a Multiplex PCR Assay for Detection of Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum in Peanut

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Southern blight, stem rot, and root rot are serious soil-borne fungal diseases of peanut, which are caused by Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum, respectively. These diseases are difficult to be diagnosed in early stage of infection, causing the optimal treatment period was often missed. Therefore, establishing a rapid detection system is of great significance for early prevention of peanut soil-borne fungal diseases. Here, we have invented a multiplex PCR detection system to detect fungal pathogens of peanut southern blight, stem rot, and root rot at the same time. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 1005-bp (F. oxysporum), 238-bp (L. theobromae), and 638-bp (S. rolfsii). The detection limit for the single and multiplex PCR primer sets was 1 ng of template DNA under in vitro conditions. Amplification of fungi of non-target species yielded no non-specific products. The validation showed that the multiplex PCR could effectively detect single and mixed infections in field samples. Overview, this study proved that this mPCR assay was a rapid, reliable, and simple tool for the simultaneous detection of three important peanut soil-borne diseases, which facilitated prompt treatment and prevention of peanut root diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Yang, H., Ni, J., Gao, J., Han, Z., & Luan, T. (2021). A novel method for peanut variety identification and classification by improved VGG16. Scientific Reports, 11(1), 15756.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmad, R., Hussain, B., & Ahmad, T. (2021). Fresh and dry fruit production in Himalayan Kashmir, Sub-Himalayan Jammu and Trans-Himalayan Ladakh, India. Heliyon, 7(1), e05835.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Minarni, Warman, I., & Yuhendra. (2019). Implementation of case-based reasoning and nearest neighbor similarity for peanut disease diagnosis. Journal of Physics: Conference Series, 1196, 012053.

    Google Scholar 

  4. Ahmad, A., Attia, A. G., Mohamed, M. S., & Elsayed, H. E. (2019). Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. Journal of Integrative Agriculture, 18(9), 140–152.

    Google Scholar 

  5. Liu, J., Li, X., Jia, Z., Zhang, T., & Wang, X. (2016). Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Applied Soil Ecology, 110, 34–42.

    Google Scholar 

  6. Jogi, A., Kerry, J. W., Brenneman, T. B., Leebens-Mack, J. H., & Gold, S. E. (2016). Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels. Microbiological Research, 184, 1–12.

    CAS  PubMed  Google Scholar 

  7. Jacob, S., Sajjalaguddam, R. R., & Sudini, H. K. (2018). Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. Journal of Integrative Agriculture, 17(04), 892–900.

    Google Scholar 

  8. Standish, J. R., Culbreath, A. K., Branch, W. D., & Brenneman, T. B. (2019). Disease and yield response of a stem-rot-resistant and -susceptible peanut cultivar under varying fungicide inputs. Plant Disease, 103(11), 2781–2785.

    CAS  PubMed  Google Scholar 

  9. Liu, F., Yan, S., Xu, F., Zhang, Z., Lu, Y., Zhang, J., & Wang, G. (2022). Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. BMC Microbiology, 22(1), 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie, X. G., Zhang, F. M., Wang, X. X., Li, X. G., & Dai, C. C. (2019). Phomopsis liquidambari colonization promotes continuous cropping peanut growth by improving the rhizosphere microenvironment, nutrient uptake and disease incidence. Journal of the Science of Food and Agriculture, 99(4), 1898–1907.

    CAS  PubMed  Google Scholar 

  11. Palacios, S., Casasnovas, F., Ramirez, M. L., Reynoso, M. M., & Torres, A. M. (2014). Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut. Brazilian Journal of Microbiology, 45(3), 1105–1112.

    PubMed  PubMed Central  Google Scholar 

  12. Sun, K., Xie, X. G., Lu, F., Zhang, F. M., & Dai, C. C. (2021). Peanut preinoculation with a root endophyte induces plant resistance to soil-borne pathogen Fusarium oxysporum via activation of salicylic acid-dependent signaling. Plant and Soil, 460, 297–312.

    CAS  Google Scholar 

  13. Zhang, F. M., He, W., Wu, C. Y., Sun, K., Zhang, W., & Dai, C. C. (2020). Phomopsis liquidambaris inoculation induces resistance in peanut to leaf spot and root rot. BioControl, 65, 475–488.

    CAS  Google Scholar 

  14. Bilgiç, H. B., Karagenç, T., Simuunza, M., Shiels, B., Tait, A., Eren, H., & Weir, W. (2013). Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Experimental Parasitology, 133(2), 222–229.

    PubMed  PubMed Central  Google Scholar 

  15. Adachi, N., & Oku, T. (2000). PCR-mediated detection of Xanthomonas oryzae pv. oryzae by amplification of the 16S–23S rDNA spacer region sequence. Journal of General Plant Pathology, 66, 303–309.

    CAS  Google Scholar 

  16. Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H., & Vogt, P. H. (1997). Multiplex PCR: Critical parameters and step-by-step protocol. BioTechniques, 23(3), 504–511.

    CAS  PubMed  Google Scholar 

  17. Chen, S., Cao, Y. Y., Li, T. Y., & Wu, X. X. (2015). Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica, 43, 449–460.

    CAS  Google Scholar 

  18. Cho, H. J., Hong, S. W., Kim, H. J., & Kwak, Y. S. (2016). Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. The Plant Pathology Journal, 32(1), 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, J., Zhao, Y., Ai, G., Xu, H., Dou, D., & Shen, D. (2019). Development of multiplex PCR assay for simultaneous detection of five cucumber pathogens based on comparative genomics. Australasian Plant Pathology, 48, 369–372.

    CAS  Google Scholar 

  20. Sun, X., Zhang, L., Meng, C., Zhang, D., Xu, N., & Yu, J. (2020). Establishment and application of a multiplex PCR assay for detection of Rhizoctonia cerealis, Bipolaris sorokiniana, and Fusarium spp. in winter wheat. Journal of Plant Pathology, 102, 19–27.

    Google Scholar 

  21. Youssef, N. A. (2015). Efficacy of the entomopathogenic nematodes and fungi for controlling the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Arab Universities Journal of Agricultural Sciences, 23(2), 591–598.

    Google Scholar 

  22. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4326.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Michielse, C. B., & Rep, M. (2010). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311–324.

    Google Scholar 

  24. Waters, D. L., & Shapter, F. M. (2014). The polymerase chain reaction (PCR): General methods. Methods in Molecular Biology, 1099, 65–75.

    CAS  PubMed  Google Scholar 

  25. Zhang, H. W., Liu, J., Dong, Y. L., Hu, J., Lamour, K., & Yang, Z. M. (2022). A one-step multiplex PCR assay for the detection and differentiation of four species of Clarireedia causing dollar spot on turfgrass. Pest Management Science. https://doi.org/10.1002/ps.7276

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bangratz, M., Wonni, I., Kini, K., Sondo, M., Brugidou, C., Béna, G., Gnacko, F., Barro, M., Koebnik, R., Silué, D., & Tollenaere, C. (2020). Design of a new multiplex PCR assay for rice pathogenic bacteria detection and its application to infer disease incidence and detect co-infection in rice fields in Burkina Faso. PLoS ONE, 15(4), e0232115.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, G. Y., Suh, S. M., Lee, Y. M., & Kim, H. Y. (2022). Multiplex PCR assay for simultaneous identification of five types of tuna (Katsuwonus pelamis, Thunnus alalonga, T. albacares, T. obesus and T. thynnus). Foods, 11(3), 280.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, O. M., Lee, H. J., Kang, S. I., Jeong, J. Y., Kwon, Y. K., & Kang, M. S. (2022). A multiplex real-time PCR assay for differential identification of avian Chlamydia. Avian Pathology: Journal of the W.V.P.A., 51(2), 164–170.

    CAS  PubMed  Google Scholar 

  29. Vauclin, M., Haverkamp, R., & Vachaud, G. (1984). Error analysis in estimating soil water content from neutron probe measurements: 2. Spatial standpoint1. Soil Science, 137, 78–90.

    Google Scholar 

  30. Nicholson, P., & Parry, D. W. (1996). Development and use of a PCR assay to detect Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Plant Pathology, 45, 872–883.

    CAS  Google Scholar 

  31. Atkins, S. D., & Clark, I. M. (2004). Fungal molecular diagnostics: A mini review. Journal of Applied Genetics, 45(1), 3–15.

    PubMed  Google Scholar 

  32. McCartney, H. A., Foster, S. J., Fraaije, B. A., & Ward, E. (2003). Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59(2), 129–142.

    CAS  PubMed  Google Scholar 

  33. Zhou, J., Liao, Y., Li, H., Lu, X., Han, X., Tian, Y., Chen, S., & Yang, R. (2015). Development of a loop-mediated isothermal amplification assay for rapid detection of Trichosporon asahii in experimental and clinical samples. Biomed Research International, 2015, 732573.

    PubMed  PubMed Central  Google Scholar 

  34. Law, J. W., Ab Mutalib, N. S., Chan, K. G., & Lee, L. H. (2014). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 1–19.

    Google Scholar 

  35. Sharma, A., Chouhan, A., Bhatt, T., Kaur, A., & Minhas, A. P. (2022). Selectable markers to marker-free selection in rice. Molecular Biotechnology, 64, 841–851.

    CAS  PubMed  Google Scholar 

  36. Huang, Y., Zhang, H., Wei, Y., Cao, Y., Zhu, Q., Li, X., Shan, T., Dai, X., & Zhang, J. (2023). Characterizing the amplification of STR markers in multiplex polymerase chain displacement reaction using massively parallel sequencing. Forensic Science International: Genetics, 62, 102802.

    CAS  PubMed  Google Scholar 

  37. Moustacas, V. S., Silva, T. M., Costa, L. F., Xavier, M. N., Carvalho, C. A., Jr., Costa, É. A., Paixão, T. A., & Santos, R. L. (2013). Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams. BMC Veterinary Research, 9, 51.

    PubMed  PubMed Central  Google Scholar 

  38. Sun, Q., Cheng, J., Lin, R., Li, J., Zhang, Y., Liang, X., Su, Y., Pang, R., Xue, L., Zeng, H., Gu, Q., Ding, Y., Wu, Q., Chen, M., & Zhang, J. (2022). A novel multiplex PCR method for simultaneous identification of hypervirulent Listeria monocytogenes clonal complex 87 and CC88 strains in China. International Journal of Food Microbiology, 366, 109558.

    CAS  PubMed  Google Scholar 

  39. Korbie, D., & Trau, M. (2022). Multiplex PCR design for scalable resequencing. Methods in Molecular Biology, 2392, 143–158.

    CAS  PubMed  Google Scholar 

  40. Liu, Z., Yu, Y., Fotina, T., Petrov, R., Klishchova, Z., Fotin, A., & Ma, J. (2022). Multiplex PCR assay based on the citE2 gene and intergenic sequence for the rapid detection of Salmonella Pullorum in chickens. Poultry Science, 101(8), 101981.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong, Y., Ji, R., Wang, Z., Gu, J., Jiao, X., & Li, Q. (2023). Development and application of a multiplex PCR method to differentiate Salmonella enterica serovar Typhimurium from its monophasic variants in pig farms. Food Microbiology, 109, 104135.

    CAS  PubMed  Google Scholar 

  42. Kundave, V. R., Ram, H., Banerjee, P. S., Garg, R., Mahendran, K., Ravikumar, G., & Tiwari, A. K. (2018). Development of multiplex PCR assay for concurrent detection of tick borne haemoparasitic infections in bovines. Acta Parasitologica, 63(3), 759–765.

    CAS  PubMed  Google Scholar 

  43. de Cássia-Pires, R., de Melo, M. F., Barbosa, R. D., & Roque, A. L. (2017). Multiplex PCR as a tool for the diagnosis of Leishmania spp. kDNA and the gapdh housekeeping gene of mammal hosts. PLoS ONE, 12, e0173922.

    PubMed  PubMed Central  Google Scholar 

  44. Peňázová, E., Dvořák, M., Ragasová, L., Kiss, T., Pečenka, J., Čechová, J., & Eichmeier, A. (2020). Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS ONE, 15, e0227559.

    PubMed  PubMed Central  Google Scholar 

  45. Zhang, X. M., Li, D., Liu, C. B., Yu, N. J., Li, Y. J., & Xie, D. M. (2022). Multiplex PCR method for simultaneous identification of Xanthii Fructus and its adulterants. China Journal of Chinese Materia Medica, 47(10), 2605–2613.

    PubMed  Google Scholar 

  46. Edwards, M. C., & Gibbs, R. A. (1994). Multiplex PCR: Advantages, development, and applications. PCR Methods and Applications, 3(4), 65–75.

    Google Scholar 

  47. Li, J. T., Fu, J. F., & Li, H. C. (2013). Epidemic processes and yield loss of northern leaf blight (Exserohilum turcicum), curvularia leaf spot (Curvularia lunata) and gray leaf spot (Cercospora zeae-maydis) of maize when they occurred together in the field. Acta Phytopathologica Sinica, 43(3), 301–309.

    Google Scholar 

  48. Dang, P. M., Lamb, M. C., & Chen, C. Y. (2021). Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.). Molecular Biology Reports, 48(1), 323–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, N., Wang, J., Yin, D., Gao, G., & Wang, W. (2010). Triplex PCR detection of Botrytis cinerea, Colletotrichum gloeosporioides and Verticillium dahliae in infected strawberry plant tissues. Scientia Agricultura Sinica, 43(21), 4392–4400.

    CAS  Google Scholar 

  50. Ni, H. F., Yang, H. R., Chen, R. S., Hung, T. H., & Liou, R. F. (2012). A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango. European Journal of Plant Pathology, 133, 819–828.

    CAS  Google Scholar 

  51. Catal, M., Jordan, S., Butterworth, S., & Schilder, A. (2007). Detection of Eutypa lata and Eutypella vitis in grapevine by nested multiplex polymerase chain reaction. Phytopathology, 97(6), 737–747.

    CAS  PubMed  Google Scholar 

  52. Kiran, R., Kumar, P., Akhtar, J., Nair, K., & Dubey, S. C. (2022). Development of multiplex PCR assay for detection of Alternaria brassicae, A. brassicicola and Xanthomonas campestris pv. campestris in crucifers. Archives of Microbiology, 204(4), 224.

    CAS  PubMed  Google Scholar 

  53. Iradukunda, L., Wang, Y. P., Nkurikiyimfura, O., Wang, T., Yang, L. N., & Zhan, J. (2022). Establishment and application of a multiplex PCR assay for the rapid detection of Rhizoctonia solani anastomosis group (AG)-3PT, the pathogen causing potato black scurf and stem canker. Pathogens, 11(6), 627.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thiessen, L. D., & Woodward, J. E. (2012). Diseases of peanut caused by soilborne pathogens in the Southwestern United States. Isrn Agronomy, 2012, 1–9.

    Google Scholar 

  55. Li, H., Li, C., Song, X., Liu, Y., Gao, Q., Zheng, R., Li, J., Zhang, P., & Liu, X. (2022). Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports, 12(1), 2758.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kong, X. Y., Zhou, X. D., Wu, H. S., Yan, S., Liu, X. X., & Wang, Z. H. (2010). Research advance in control of soil-borne diseases in continuously-cultivated peanut. Acta Agriculturae Jiangxi, 22(08), 12–15.

    Google Scholar 

  57. Cho, J. D., Kim, J. S., Park, H. S., La, Y. J., & Kim, K. S. (2000). Ultrastructural aspects of the mixed infections of watermelon mosaic potyvirus isolated from pumpkin and cucumber green mottle mosaic tobamovirus from watermelon. The Plant Pathology Journal, 16(4), 216–221.

    Google Scholar 

  58. Nithya, K., Parameswari, B., & Viswanathan, R. (2020). Mixed infection of sugarcane yellow leaf virus and grassy shoot phytoplasma in yellow leaf affected Indian sugarcane cultivars. The Plant Pathology Journal, 36(4), 364–377.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Sciences Foundation of China (Grant No. 32202266), the Shandong Modern Agricultural Industry Technology System (Grant No. SDAIT-04-08), the Outstanding Youth Foundation of Shandong Province (Grant No. ZR2021YQ20), and the Key Research and Development Program of Shandong Province (Grant No. 2019JZZY020608).

Funding

Funding was provided by the National Natural Sciences Foundation of China (Grant No. 32202266), the Shandong Modern Agricultural Industry Technology System (Grant No. SDAIT-04-08), the Outstanding Youth Foundation of Shandong Province (Grant No. ZR2021YQ20), and the Key Research and Development Program of Shandong Province (Grant No. 2019JZZY020608).

Author information

Authors and Affiliations

Authors

Contributions

AXL, XL, and JW conceived and designed research. XL, JW, XLH, and MQL conducted experiments. XYS and CH analyzed data. JW and CH wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Chao Han or Aixin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X., Sun, X. et al. Establishment and Application of a Multiplex PCR Assay for Detection of Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum in Peanut. Mol Biotechnol 65, 1369–1377 (2023). https://doi.org/10.1007/s12033-022-00647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00647-1

Keywords

Navigation