Skip to main content
Log in

A WRKY Transcription Factor PmWRKY57 from Prunus mume Improves Cold Tolerance in Arabidopsis thaliana

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Prunus mume, a woody perennial tree, is valued for its ornamental traits and has been cultivated for a long history. Low temperature is the main environmental factor restricting the distribution and affecting the growth of P. mume. In plants, some WRKY transcription factors have been reported to participate in regulating cold tolerance. However, there were few researches about functional characterization of WRKYs involving in P. mume cold response. Here, a cold-induced WRKY gene named as PmWRKY57 was cloned from a P. mume cultivar ‘Guhong Zhusha.’ PmWRKY57 protein harboring a WRKY domain and a C2H2 zinc finger motif belongs to Group IIc of WRKY family. The PmWRKY57 protein was located to the nucleus and has transcriptional activation activity. PmWRKY57-overexpresing Arabidopsis thaliana lines showed improved cold tolerance, compared to wild-type plants. Under cold treatment, the leaves of transgenic lines contained significantly lower malondialdehyde content, and higher levels of superoxide dismutase activity, peroxidase activity, and proline content than wild-type plants. Furthermore, the expression levels of cold-response genes such as AtCOR6.6, AtCOR47, AtKIN1, and AtRCI2A were up-regulated in leaves of transgenic A. thaliana compared to those in wild-type plants. This study characterized the function of PmWRKY57 in improving cold tolerance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary file.

References

  1. Bao, F., Ding, A., Cheng, T., Wang, J., & Zhang, Q. (2019). Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume. Genes, 10, 911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miura, K., & Furumoto, T. (2013). Cold signaling and cold response in plants. International Journal of Molecular Sciences, 2013, 5312–5337.

    Article  Google Scholar 

  3. Ritonga, F. N., & Chen, S. (2020). Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9, 560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Megha, S., Basu, U., & Kav, N. N. V. (2018). Regulation of low temperature stress in plants by microRNAs. Plant, Cell and Environment, 41, 1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 101, 15243–15248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.-H., Hong, X., Agarwal, M., & Zhu, J.-K. (2003). ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17, 1043–1054.

    Article  CAS  Google Scholar 

  7. Yao, P., Sun, Z., Li, C., Zhao, X., Li, M., Deng, R., Huang, Y., Zhao, H., Chen, H., & Wu, Q. (2018). Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiology and Biochemistry, 125, 85–94.

    Article  CAS  PubMed  Google Scholar 

  8. Sun, X., Zhu, Z., Zhang, L., Fang, L., Zhang, J., Wang, Q., Li, S., Liang, Z., & Xin, H. (2019). Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Scientia Horticulturae, 243, 320–326.

    Article  CAS  Google Scholar 

  9. Wang, Y., Mao, Z., Jiang, H., Zhang, Z., & Chen, X. (2019). A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance. Biochemical and Biophysical Research Communications, 512, 381–386.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, L., Zhao, Y., Xu, S., Zhang, Z., Xu, Y., Zhang, J., & Chong, K. (2018). OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytologist, 218, 219–231.

    Article  CAS  PubMed  Google Scholar 

  11. Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 5, 247–258.

    Article  Google Scholar 

  12. Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 199–206.

    Article  CAS  PubMed  Google Scholar 

  13. Marè, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A. M., & Cattivelli, L. (2004). Hv-WRKY38: A new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 55, 399–416.

    Article  PubMed  Google Scholar 

  14. Zhou, Q. Y., Tian, A. G., Zou, H. F., Xie, Z. M., Lei, G., Huang, J., Wang, C. M., Wang, H. W., Zhang, J. S., & Chen, S. Y. (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486–503.

    Article  CAS  PubMed  Google Scholar 

  15. Li, H., Xu, Y., Xiao, Y., Zhu, Z., Xie, X., Zhao, H., & Wang, Y. (2010). Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta, 232, 1325–1337.

    Article  CAS  PubMed  Google Scholar 

  16. Niu, C. F., Wei, W., Zhou, Q. Y., Tian, A. G., Hao, Y. J., Zhang, W. K., Ma, B., Lin, Q., Zhang, Z. B., Zhang, J. S., & Chen, S. Y. (2012). Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell & Environment, 35, 1156–1170.

    Article  CAS  Google Scholar 

  17. Kim, C. Y., Vo, K. T. X., Nguyen, C. D., Jeong, D. H., Lee, S. K., Kumar, M., Kim, S. R., Park, S. H., Kim, J. K., & Jeon, J. S. (2016). Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports, 10, 13–23.

    Article  CAS  Google Scholar 

  18. Zhang, L., Zhao, T., Sun, X., Wang, Y., Du, C., Zhu, Z., Gichuki, D. K., Wang, Q., Li, S., & Xin, H. (2019). Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology, 100, 95–110.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, M. Q., Huang, Q. X., Lin, P., Zeng, Q. H., Li, Y., Liu, Q. L., Zhang, L., Pan, Y. Z., Jiang, B. B., & Zhang, F. (2020). The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis. Frontiers in Plant Science, 10, 1746.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang, X., Cao, L., Fan, J., Ma, G., & Chen, L. (2022). CdWRKY2-mediated sucrose biosynthesis and CBF-signalling pathways coordinately contribute to cold tolerance in bermudagrass. Plant Biotechnology Journal, 20, 660–675.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., Tao, Y., Wang, J., Yuan, Z., Fan, G., Xing, Z., Han, C., Pan, H., Zhong, X., Shi, W., Liang, X., Du, D., Sun, F., Xu, Z., … Wang, J. (2012). The genome of Prunus mume. Nature Communications, 3, 1318.

    Article  PubMed  Google Scholar 

  22. Zhu, S., Fang, Q., Wang, Y., Zhong, S., Dong, B., & Zhao, H. (2022). OfSPL11 gene from Osmanthus fragrans promotes plant growth and oxidative damage reduction to enhance salt tolerance in Arabidopsis. Horticulturae, 8, 412.

    Article  Google Scholar 

  23. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, S., Yuan, L., Zhai, H., Liu, C., He, S., & Liu, Q. (2011). Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell, Tissue and Organ Culture, 107, 205–213.

    Article  CAS  Google Scholar 

  25. Wang, Y., Zhang, C., Dong, B., Fu, J., Hu, S., & Zhao, H. (2018). Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans. Frontiers in Plant Science, 9, 1499.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  27. Peng, T., Guo, C., Yang, J., Xu, M., Zuo, J., Bao, M., & Zhang, J. (2016). Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture, 126, 373–385.

    Article  CAS  Google Scholar 

  28. Bao, F., Du, D., An, Y., Yang, W., Wang, J., Cheng, T., & Zhang, Q. (2017). Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Frontiers in Plant Science, 8, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, K., Zhou, Y., Li, Y., Zhuo, X., Ahmad, S., Han, Y., Yong, X., & Zhang, Q. (2018). Crosstalk of PmCBFs and PmDAMs based on the changes of phytohormones under seasonal cold stress in the stem of Prunus mume. International Journal of Molecular Sciences, 19, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhuo, X., Zheng, T., Zhang, Z., Zhang, Y., Jiang, L., Ahmad, S., Sun, L., Wang, J., Cheng, T., & Zhang, Q. (2018). Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume. Genes, 9, 494.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6, 431–438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported grants from National Key R&D Program of China (No. 2018YFD1000400; 2019YFD1001500) and the key research and development program of Zhejiang Province (2021C02071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dong, B., Wang, N. et al. A WRKY Transcription Factor PmWRKY57 from Prunus mume Improves Cold Tolerance in Arabidopsis thaliana. Mol Biotechnol 65, 1359–1368 (2023). https://doi.org/10.1007/s12033-022-00645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00645-3

Keywords

Navigation