Skip to main content
Log in

Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cellular pool of malonyl-CoA in Escherichia coli is small, which impedes its utility for overproduction of natural products such as phenylpropanoids, polyketides, and flavonoids. In this study, we report the use of a new metabolic pathway to increase the malonyl-CoA concentration as a limiting metabolite in E. coli. For this purpose, the malonate/sodium symporter from Malonomonas rubra, and malonyl-CoA synthetase (MCS) from Bradyrhizobium japonicum were co-expressed in E. coli. This new pathway allows the cell to actively import malonate from the culture medium and to convert malonate and CoA to malonyl-CoA via an ATP-dependent ligation reaction. HPLC analysis confirmed elevated levels of malonyl-CoA and (2S)-naringenin as a malonyl-CoA-dependent metabolite, in E. coli. A 6.8-fold and more than 3.5-fold increase in (2S)-naringenin production were achieved in the engineered host in comparison with non-engineered E. coli and previously reported passive transport MatBMatC pathway, respectively. This observation suggests that using active transporters of malonate not only improves malonyl-CoA-dependent production but also makes it possible to harness low concentrations of malonate in culture media.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The published article includes all data sets generated during this study.

Abbreviations

CoA:

Coenzyme A

MCoA:

Malonyl-coenzyme A

MCS:

Malonyl-CoA synthetase

ACC:

Acetyl-CoA carboxylase

References

  1. Dixon, R. A., & Steele, C. L. (1999). Flavonoids and isoflavonoids–a gold mine for metabolic engineering. Trends in Plant Science, 4, 394–400.

    Article  CAS  PubMed  Google Scholar 

  2. Zha, W., Rubin-Pitel, S. B., Shao, Z., & Zhao, H. (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering, 11, 192–198.

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen, J., & Keasling, J. D. (2011). Synergies between synthetic biology and metabolic engineering. Nature Biotechnology, 29, 693–695.

    Article  CAS  PubMed  Google Scholar 

  4. Koryakina, I., & Williams, G. J. (2011). Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation. ChemBioChem, 12, 2289–2293.

    Article  CAS  PubMed  Google Scholar 

  5. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., & Mehta, R. G. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.

    Article  CAS  PubMed  Google Scholar 

  6. Bradamante, S., Barenghi, L., & Villa, A. (2004). Cardiovascular protective effects of resveratrol. Cardiovascular Drug Reviews, 22, 169–188.

    Article  CAS  PubMed  Google Scholar 

  7. Lim, C. G., Fowler, Z. L., Hueller, T., Schaffer, S., & Koffas, M. A. (2011). High-yield resveratrol production in engineered Escherichia coli. Applied and Environmental Microbiology, 77, 3451–3460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, J., Zhou, T., Du, G., Zhou, J., & Chen, J. (2014). Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS ONE, 9, e101492.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Magnuson, K., Jackowski, S., Rock, C. O., & Cronan, J. E. (1993). Regulation of fatty acid biosynthesis in Escherichia coli. Microbiological Reviews, 57, 522–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, M. S., Solbiati, J., & Cronan, J. E. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J BiolChem, 275, 28593–28598.

    CAS  Google Scholar 

  11. Liu, T., Vora, H., & Khosla, C. (2010). Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metabolic Engineering, 12, 378–386.

    Article  CAS  PubMed  Google Scholar 

  12. Sáez-Sáez, J., Wang, G., Marella, E. R., Sudarsan, S., Pastor, M. C., & Borodina, I. (2020). Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metabolic Engineering, 62, 51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leonard, E., Lim, K.-H., Saw, P.-N., & Koffas, M. A. (2007). Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 73, 3877–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, J., Zhou, L., Duan, X., Peng, H., Liu, S., Zhuang, Q., Pablo, C.-M., Fan, X., Ding, S., & Dong, M. (2021). Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability. Metabolic Engineering, 67, 403–416.

    Article  CAS  PubMed  Google Scholar 

  15. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Molecular Systems Biology, 2(2006), 0008.

    Google Scholar 

  16. Kim, Y.-S. (2002). Malonate metabolism: Biochemistry, molecular biology, physiology, and industrial application. BMB Reports, 35, 443–451.

    Article  CAS  Google Scholar 

  17. An, J. H., & Kim, Y. S. (1998). A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii. European Journal of Biochemistry, 257, 395–402.

    Article  CAS  PubMed  Google Scholar 

  18. Leonard, E., Yan, Y., Fowler, Z. L., Li, Z., Lim, C.-G., Lim, K.-H., & Koffas, M. A. (2008). Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics, 5, 257–265.

    Article  CAS  PubMed  Google Scholar 

  19. Choi, O., Wu, C.-Z., Kang, S. Y., Ahn, J. S., Uhm, T.-B., & Hong, Y.-S. (2011). Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 38, 1657–1665.

    Article  CAS  PubMed  Google Scholar 

  20. Jeschek, M., Bahls, M. O., Schneider, V., Marlière, P., Ward, T. R., & Panke, S. (2017). Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metabolic Engineering, 40, 33–40.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, J., Zhou, P., Zhang, X., & Dong, M. (2017). Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 44, 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, Z., Jones, J. A., Zhou, J., & Koffas, M. A. (2018). Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnology Journal, 13, 1700576.

    Article  Google Scholar 

  23. Liang, B., Sun, G., Wang, Z., Xiao, J., & Yang, J. (2019). Production of 3-hydroxypropionate using a novel malonyl-CoA-mediated biosynthetic pathway in genetically engineered E. coli strain. Green Chemistry, 21, 6103–6115.

    Article  CAS  Google Scholar 

  24. Moore, S. J., Hleba, Y. B., Bischoff, S., Bell, D., Polizzi, K. M., & Freemont, P. S. (2021). Refactoring of a synthetic raspberry ketone pathway with EcoFlex. Microbial Cell Factories, 20, 1–11.

    Google Scholar 

  25. Zhou, S., Yuan, S.-F., Nair, P. H., Alper, H. S., Deng, Y., & Zhou, J. (2021). Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metabolic Engineering, 67, 41–52.

    Article  CAS  PubMed  Google Scholar 

  26. Schaffitzel, C., Berg, M., Dimroth, P., & Pos, K. M. (1998). Identification of an Na+-dependent malonate transporter of Malonomonas rubra and its dependence on two separate genes. Journal of Bacteriology, 180, 2689–2693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H., Kim, H. U., & Weng, H. (2011). Malonyl-CoA synthetase, encoded by acyl activating enzyme13, is essential for growth and development of Arabidopsis. The Plant Cell, 23, 2247–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  29. Alishah, K., Asad, S., Khajeh, K., & Akbari, N. (2016). Utilizing intein-mediated protein cleaving for purification of uricase, a multimeric enzyme. Enzyme and Microbial Technology, 93, 92–98.

    Article  PubMed  Google Scholar 

  30. Kim, Y. S., & Bang, S. K. (1988). Assays for malonyl-coenzyme A synthase. Analytical Biochemistry, 170, 45–49.

    Article  CAS  PubMed  Google Scholar 

  31. Fowler, Z. L., Gikandi, W. W., & Koffas, M. A. (2009). Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Applied and Environmental Microbiology, 75, 5831–5839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asad, S., Dabirmanesh, B., & Khajeh, K. (2014). Phenol removal from refinery wastewater by mutant recombinant horseradish peroxidase. Biotechnology and Applied Biochemistry, 61, 226–229.

    Article  CAS  PubMed  Google Scholar 

  33. Korkina, L., Kostyuk, V., De Luca, C., & Pastore, S. (2011). Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Reviews in Medicinal Chemistry, 11, 823–835.

    Article  CAS  PubMed  Google Scholar 

  34. Yu, O., & Jez, J. M. (2008). Nature’s assembly line: Biosynthesis of simple phenylpropanoids and polyketides. The Plant Journal, 54, 750–762.

    Article  CAS  PubMed  Google Scholar 

  35. Pandey, R. P., Parajuli, P., Koffas, M. A., & Sohng, J. K. (2016). Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances, 34, 634–662.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, P., Gu, Q., Wang, W., Wong, L., Bower, A. G., Collins, C. H., & Koffas, M. A. (2013). Modular optimization of multi-gene pathways for fatty acids production in E coli. Nature Communications, 4, 1409.

    Article  PubMed  Google Scholar 

  37. Galen, J. E., Wang, J. Y., Chinchilla, M., Vindurampulle, C., Vogel, J. E., Levy, H., Blackwelder, W. C., Pasetti, M. F., & Levine, M. M. (2010). A new generation of stable, nonantibiotic, low-copy-number plasmids improves immune responses to foreign antigens in Salmonella enterica serovar Typhi live vectors. Infection and Immunity, 78, 337–347.

    Article  CAS  PubMed  Google Scholar 

  38. Freitas, P., da Silva, D., Beluomini, M., da Silva, J., & Stradiotto, N. (2018). Determination of phenolic acids in sugarcane vinasse by HPLC with pulse amperometry. Applied and Environmental Microbiology. https://doi.org/10.1155/2018/4869487

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benke, M., Mermut, A., & Chatson, B. (1998). Carbon-13 CP/MAS NMR and DR-FTIR spectroscopic studies of sugarcane distillery waste. Canadian Journal of Soil Science, 78, 227–236.

    Article  CAS  Google Scholar 

  40. Carrier, D. J., Bergeron, C., & Ramaswamy, S. (2012). Biorefinery co-products: Phytochemicals, primary metabolites and value-added biomass processing. Wiley.

    Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the Iran National Science Foundation (INSF) for financial support of this research (Project No. 94017574). Additionally, we would like to thank Prof. K.M. Pos (Goethe University Frankfurt, Germany) and Prof. J. Chen (Jiangnan University, Jiangsu, China) for providing us with the recombinant vectors and Mohammad Ranjbar for his constructive feedbacks over the manuscript.

Funding

This study was supported by Iran National Science Foundation (Grant No. 94017574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Asad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moteallehi-Ardakani, M.H., Asad, S., Marashi, SA. et al. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli. Mol Biotechnol 65, 1508–1517 (2023). https://doi.org/10.1007/s12033-022-00635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00635-5

Keywords

Navigation