Skip to main content

Advertisement

Log in

LncRNA LINC02535 Induces Colorectal Adenocarcinoma Progression via Modulating miR-30d-5p/CHD1

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Growing evidence has suggested that lncRNAs play a significant role in the development of colorectal adenocarcinoma. LncRNA LINC02535 was a potential novel lncRNA marker of neoplastic processes of the colon. Nevertheless, the function and mechanisms of LINC02535 in colorectal adenocarcinoma remain unclear. Proteins levels were measured by western blotting. EdU, CCK-8, Transwell, and wound healing assays were performed to investigate the function of LINC02535 in colorectal adenocarcinoma. The distribution of LINC02535 in cells was evaluated by subcellular fractionation assay. The interaction among RNAs was identified by luciferase reporter and RIP assays. In this study, our findings revealed that LINC02535 was highly expressed in colorectal adenocarcinoma cells. Knockdown of LINC02535 inhibited colorectal adenocarcinoma cell proliferation, migration, and invasion. Mechanistically, LINC02535 bound with miR-30d-5p and worked as a competing endogenous RNA to facilitate the expression of messenger RNA chromodomain helicase DNA-binding protein 1 (CHD1). miR-30d-5p directly targeted the sequence of CHD1 3′-untranslated region. Notably, CHD1 upregulation abolished the suppressive influence of LINC02535 inhibition on the malignant phenotypes of colorectal adenocarcinoma cells. Overall, it was disclosed that LINC02535 played an oncogenic role in colorectal adenocarcinoma progression by sponging miR-30d-5p to upregulate CHD1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Ji, L., Chen, S., Gu, L., & Zhang, X. (2020). Exploration of potential roles of m6A regulators in colorectal cancer prognosis. Frontiers in Oncology, 10, 768.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu, J., Li, C., Xu, J., & Wu, H. (2018). A patient-oriented clinical decision support system for CRC risk assessment and preventative care. BMC Medical Informatics and Decision Making, 18(Suppl 5), 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ballester, V., Rashtak, S., & Boardman, L. (2016). Clinical and molecular features of young-onset colorectal cancer. World Journal of Gastroenterology, 22(5), 1736–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, L., Xie, D., Xie, H., Huang, W., Zhang, J., Jin, W., Jiang, W., & Xie, D. (2019). ARHGAP10 inhibits the proliferation and metastasis of CRC cells via blocking the activity of RhoA/AKT signaling pathway. OncoTargets and Therapy, 12, 11507–11516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G. S., Barzi, A., & Jemal, A. (2017). Colorectal cancer statistics, 2017. CA: Cancer Journal for Clinicians, 67(3), 177–93.

    Google Scholar 

  6. Delgado, M. D., & León, J. (2006). Gene expression regulation and cancer. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 8(11), 780–787.

    Article  CAS  Google Scholar 

  7. Slack, F. J., & Chinnaiyan, A. M. (2019). The role of non-coding RNAs in oncology. Cell, 179(5), 1033–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, P., Wu, W., Chen, Q., & Chen, M. (2019). Non-coding RNAs and their integrated networks. Journal of Integrative Bioinformatics. https://doi.org/10.1515/jib-2019-0027

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S. D., Zhang, Y., Yang, L., Shan, W., He, Q., & Fan, L. (2015). Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell, 28(4), 529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, W., Ji, X., & Zhao, Y. (2019). Emerging roles of long non-coding RNAs in chronic neuropathic pain. Frontiers in Neuroscience, 13, 1097.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yingmin, W., Yang, X., Chen, Z., Tian, L., Jiang, G., Chen, F., Li, J., An, P., Linlin, L., Luo, N., Jun, D., Shan, H., Liu, H., & Wang, H. (2019). m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Molecular Cancer, 18(1), 87.

    Article  Google Scholar 

  12. Liang, Z. X., Liu, H. S., Wang, F. W., Xiong, L., Zhou, C., Hu, T., et al. (2019). LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death & Disease, 10(11), 829.

    Article  Google Scholar 

  13. Wang, Y., Jia-Huan, L., Qi-Nian, W., Jin, Yg., Wang, D. S., Chen, Y. X., Liu, J., Luo, X. J., Meng, Q., Heng-Ying, P., Wang, Y. N., Pei-Shan, H., Liu, Z. X., Zeng, Z. L., Zhao, Q., Deng, R., Zhu, X. F., Huai-Qiang, J., & Rui-Hua, X. (2019). LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 18(1), 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, J., Gao, L., Chen, H., Zhou, X., Lu, X., & Mao, Z. (2021). LINC02535 promotes cell growth in poorly differentiated gastric cancer. Journal of Clinical Laboratory Analysis. https://doi.org/10.1002/jcla.23877

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wen, D., Huang, Z., Li, Z., Tang, X., Wen, X., Liu, J., & Li, M. (2020). LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer by stabilizing RRM1 mRNA. Journal of Cellular Physiology, 235(10), 7592–7603.

    Article  CAS  PubMed  Google Scholar 

  16. Kalmár, A., Nagy, Z. B., Galamb, O., Csabai, I., Bodor, A., Wichmann, B., Valcz, G., Barták, B. K., Tulassay, Z., Igaz, P., & Molnár, B. (2019). Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer, 19(1), 1059.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qi, X., Zhang, D. H., Wu, N., Xiao, J. H., Wang, X., & Ma, W. (2015). ceRNA in cancer: Possible functions and clinical implications. Journal of Medical Genetics, 52(10), 710–718.

    Article  PubMed  Google Scholar 

  18. Zhang, L., Li, C., & Su, X. (2020). Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. Journal of Experimental & Clinical Cancer Research: CR, 39(1), 271.

    Article  CAS  PubMed Central  Google Scholar 

  19. Martínez-Barriocanal, Á., Arango, D., & Dopeso, H. (2020). PVT1 long non-coding RNA in gastrointestinal cancer. Frontiers in Oncology, 10, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schoberleitner, I., Mertens, B., Bauer, I., & Lusser, A. (2022). Regulation of sensory perception and motor abilities by brain-specific action of chromatin remodeling factor CHD1. Frontiers in Molecular Neuroscience, 15, 840966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeDecker, L., Coppedge, B., Avelar-Barragan, J., Karnes, W., & Whiteson, K. (2021). Microbiome distinctions between the CRC carcinogenic pathways. Gut Microbes, 13(1), 1854641.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y., Hou, J., He, D., Sun, M., Zhang, P., Yu, Y., & Chen, Y. (2016). The emerging function and mechanism of ceRNAs in cancer. Trends in Genetics: TIG, 32(4), 211–224.

    Article  PubMed  Google Scholar 

  23. Zhang, H., & Lu, B. (2020). The roles of ceRNAs-mediated autophagy in cancer chemoresistance and metastasis. Cancers, 12(10), 2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, Q., Li, J., Li, F., Li, H., Bei, S., Zhang, X., & Feng, L. (2019). LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway. Cell Proliferation, 52(6), e12687.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao, L., Hu, K., Cao, J., Wang, P., Li, J., Zeng, K., He, X., Tu, P. F., Tong, T., & Han, L. (2019). lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging, 11(17), 7098–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Correia de Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C., & Foti, M. (2019). Deciphering miRNAs’ action through miRNA Editing. International Journal of Molecular Sciences, 20(24), 6249.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang, L., Yang, Z., Deng, Q., Jiang, Y., Cheng, Y., Sun, Y., & Lei, L. (2021). miR-30d-5p suppresses proliferation and autophagy by targeting ATG5 in renal cell carcinoma. FEBS Open Bio, 11(2), 529–540.

    Article  CAS  PubMed  Google Scholar 

  28. Qi, Y., Hou, Y., & Qi, L. (2021). miR-30d-5p represses the proliferation, migration, and invasion of lung squamous cell carcinoma via targeting DBF4. Journal of Environmental Science and Health Part C, Toxicology and Carcinogenesis. https://doi.org/10.1080/26896583.2021.1926855

    Article  PubMed  Google Scholar 

  29. He, W. P., Guo, Y. Y., Yang, G. P., Lai, H. L., Sun, T. T., Zhang, Z. W., Ouyang, L. L., Zheng, Y., Tian, L. M., Li, X. H., & You, Z. S. (2020). CHD1L promotes EOC cell invasiveness and metastasis via the regulation of METAP2. International Journal of Medical Sciences, 17(15), 2387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, S., Chai, Y., Ding, Y., Yuan, T., Wu, C., & Huang, C. (2019). CHD1L is associated with poor survival and promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma. Oncology Reports, 42(2), 657–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, W., Wu, J., Fei, X., Chen, W., Li, Y., Shen, K., & Zhu, L. (2019). CHD1L promotes cell cycle progression and cell motility by up-regulating MDM2 in breast cancer. American Journal of Translational Research, 11(3), 1581–1592.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Zheng or Si Cheng.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_628_MOESM1_ESM.tif

Supplementary file1 (TIF 175 KB) Effect of LINC02535 on NCM460 cell proliferation. A. qRT-PCR analysis for assessing transfection efficiency of LINC02535 knockdown in NMC460 cells. B. CCK-8 assay for assessing the viability of NCM460 cells. C-D. EdU assay for evaluating proliferation of NCM460 cells

12033_2022_628_MOESM2_ESM.tif

Supplementary file2 (TIF 179 KB) Effect of CHD1 on NCM460 cell proliferation. A. qRT-PCR analysis for assessing transfection efficiency of CHD1 overexpression in NMC460 cells. B. CCK-8 assay for examining the viability of NCM460 cells. C-D. EdU assay for evaluating proliferation of NCM460 cells

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, J., Zheng, S. et al. LncRNA LINC02535 Induces Colorectal Adenocarcinoma Progression via Modulating miR-30d-5p/CHD1. Mol Biotechnol 65, 1346–1358 (2023). https://doi.org/10.1007/s12033-022-00628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00628-4

Keywords

Navigation