Skip to main content
Log in

Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The high ratio of global mortality rate to incidence rate and steep increase in incidence of liver cancer warrants need for advancement of innovative cancer treatment and therapy for hepatocellular carcinoma (HCC). miRNAs are fascinating prospects as treatments in the form of miRNA mimics or therapeutic targets because of their capacity to target various mRNAs that are changed in diseased states. Micronome is a tool to find signature miRNA for any disease and there is hardly any study on micronome in HCC. The aim of the present study was to identify the genes involved in tumor growth and angiogenesis in HCC patients and determine the signature miRNA by constructing a micronome. Herein, we performed a comprehensive analysis on dysregulated genes obtained from liver cancer gene databases. Only experimentally validated miRNA of angiogenesis genes were included in the study. Micronome was constructed using Cytoscape software and search tools for the retrieval of interacting genes (STRING) database. Dysregulated genes of HCC were integrated with miRNAs for identification of signature miRNA involved and identify genes (acting as positive or negative regulator) to elucidate the potential regulatory pathway or signaling. The study clearly reflects that hsa-mir-205-5p is the signature miRNA for positively regulating angiogenesis in HCC through VEGFA. These regulatory genes and signature miRNAs may be useful to understand the unique angiogenesis process of HCC and quick development of novel/better and cost effective molecular-targeted treatment strategies in HCC as the responsible regulatory molecules can be pinpointed with limited resources with use of bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawla, P., Sunkara, T., Muralidharan, P., & Raj, J. P. (2018). Update in global trends and aetiology of hepatocellular carcinoma. Contemporary Oncology, 22, 141–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Llovet, J. M., De Baere, T., Kulik, L., Haber, P. K., Greten, T. F., Meyer, T., & Lencioni, R. (2021). Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 18, 293–313.

    Article  CAS  Google Scholar 

  3. GLOBOCAN. (2020). Cancer Today. http://gco.iarc.fr/today/home

  4. Gupta, M. K., & Qin, R.-Y. (2003). Mechanism and its regulation of tumor-induced angiogenesis. World Journal of Gastroenterology, 9, 1144–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karamysheva, A. F. (2008). Mechanisms of angiogenesis. Biochemistry Moscow, 73, 751–762.

    Article  CAS  PubMed  Google Scholar 

  6. Flier, J. S., Underhill, L. H., & Dvorak, H. F. (1986). Tumors: Wounds that do not heal. New England Journal of Medicine, 315, 1650–1659.

    Article  Google Scholar 

  7. Kaseb, A. O., Hanbali, A., Cotant, M., Hassan, M. M., Wollner, I., & Philip, P. A. (2009). Vascular endothelial growth factor in the management of hepatocellular carcinoma: A review of literature. Cancer, 115, 4895–4906.

    Article  CAS  PubMed  Google Scholar 

  8. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery, 16, 203–222.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel, D. P. (2004). MicroRNAs. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  11. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., & Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  12. Iorio, M. V., & Croce, C. M. (2012). Causes and consequences of microRNA dysregulation. Cancer Journal, 18, 215–222.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  14. Peng, Y., & Croce, C. M. (2016). The role of microRNAs in human cancer. Signal Transduction and Targeted Therapy, 1, 15004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lian, Q., Wang, S., Zhang, G., Wang, D., Luo, G., Tang, J., Chen, L., & Gu, J. (2018). HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics, Proteomics & Bioinformatics, 16, 269–275.

    Article  Google Scholar 

  16. Hsu, C.-N., Lai, J.-M., Liu, C.-H., et al. (2007). Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (encyclopedia of hepatocellular carcinoma genes online). BMC Bioinformatics, 8, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaur, H., Bhalla, S., Kaur, D., & Raghava, G. P. (2020). CancerLivER: A database of liver cancer gene expression resources and biomarkers. Database, 2020, 011.

    Article  Google Scholar 

  18. Ouyang J, Sun Y, Li W, Zhang W, Wang D, Liu X, Lin Y, Lian B, Xie L (2016). A dbPHCC: a database of prognostic biomarkers for hepatocellular carcinoma that provides online prognostic modeling. Biochimica et Biophysica Acta 180: 2688-2695

  19. Szklarczyk, D., Gable, A. L., Lyon, D., et al. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47, D607–D613.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, H.-Y., Lin, Y.-C.-D., Li, J., et al. (2019). miRTarBase 2020: Updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Research, 1, 896.

    Article  Google Scholar 

  21. Karagkouni, D., Paraskevopoulou, M. D., Chatzopoulos, S., et al. (2018). DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Research, 46, D239–D245.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., & Li, T. (2009). miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Research, 37, D105–D110.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., & Liu, Y. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37, D98–D104.

    Article  CAS  PubMed  Google Scholar 

  24. Oulas, A., Karathanasis, N., Louloupi, A., & Poirazi, P. (2011). Finding cancer-associated miRNAs: Methods and tools. Molecular Biotechnology, 49, 97–107.

    Article  CAS  PubMed  Google Scholar 

  25. Lombe, C. P., Meyer, M., & Pretorius, A. (2022). Bioinformatics prediction and analysis of MicroRNAs and their targets as biomarkers for prostate cancer: A preliminary study. Molecular Biotechnology, 64, 401–412.

    Article  CAS  PubMed  Google Scholar 

  26. Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2007). The microRNA.org resource: Targets and expression. Nucleic Acids Research, 36, D149–D153.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. ELife 4:e05005

  28. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shirdel, E. A., Xie, W., Mak, T. W., & Jurisica, I. (2011). NAViGaTing the micronome: Using multiple MicroRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS ONE, 6, e17429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2, 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu, C., Lhamo, T., Zou, C., Zhou, C., Su, T., Draga, D., Luo, D., Zheng, Z., Yin, L., & Qiu, Q. (2020). Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Medical Genomics, 13, 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Z., Lin, Y., Cheng, B., Zhang, Q., & Cai, Y. (2021). Identification and analysis of potential key genes associated with hepatocellular carcinoma based on integrated bioinformatics methods. Frontiers in Genetics, 12, 571231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, Y., Liu, J., Zhao, D., & Diao, G. (2022). A novel prognostic model for identifying the risk of hepatocellular carcinoma based on angiogenesis factors. Frontiers in Genetics, 13, 857215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beheshtizadeh, N., Asgari, Y., Nasiri, N., Farzin, A., Ghorbani, M., Lotfibakhshaiesh, N., & Azami, M. (2021). A network analysis of angiogenesis/osteogenesis-related growth factors in bone tissue engineering based on in-vitro and in-vivo data: A systems biology approach. Tissue and Cell, 72, 101553.

    Article  CAS  PubMed  Google Scholar 

  35. Hozhabri, H., Ghasemi Dehkohneh, R. S., Razavi, S. M., et al. (2022). Comparative analysis of protein–protein interaction networks in metastatic breast cancer. PLoS ONE, 17, e0260584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaji, S. K., Drishya, G., Sunilkumar, D., Suravajhala, P., Kumar, G. B., & Nair, B. G. (2022). Systematic understanding of anti-tumor mechanisms of Tamarixetin through network and experimental analyses. Science and Reports, 12, 3966.

    Article  CAS  Google Scholar 

  37. Liu, J., Wang, J., Fu, W., et al. (2021). MiR-195-5p and miR-205-5p in extracellular vesicles isolated from diabetic foot ulcer wound fluid decrease angiogenesis by inhibiting VEGFA expression. Aging, 13, 19805–19821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrari, E., & Gandellini, P. (2020). Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death & Disease, 11, 980.

    Article  CAS  Google Scholar 

  39. Yang, W., Tan, S., Yang, L., et al. (2022). Exosomal miR-205-5p enhances angiogenesis and nasopharyngeal carcinoma metastasis by targeting desmocollin-2. Molecular Therapy Oncolytics, 24, 612–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, G.-F., Wu, J.-C., Wang, H.-Y., Jiang, W.-D., & Qiu, L. (2020). Overexpression of microRNA-205-5p exerts suppressive effects on stem cell drug resistance in gallbladder cancer by down-regulating PRKCE. Bioscience Reports, 40, 20194509.

    Article  Google Scholar 

  41. Liu, X., Chen, D., Chen, H., et al. (2021). YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Communications, 41, 576–595.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao, X., Zhou, S., Wang, D., He, W., Li, J., & Zhang, S. (2018). MicroRNA-205 is downregulated in hepatocellular carcinoma and inhibits cell growth and metastasis via directly targeting vascular endothelial growth factor A. Oncology Letters, 16, 2207–2214.

    PubMed  PubMed Central  Google Scholar 

  43. Dat, V. H. X., Nhung, B. T. H., Chau, N. N. B., Cuong, P. H., Hieu, V. D., Linh, N. T. M., & Quoc, N. B. (2022). Identification of potential microRNA groups for the diagnosis of hepatocellular carcinoma (HCC) using microarray datasets and bioinformatics tools. Heliyon, 8, e08987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong, G., & Xiong, X. (2015). miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression. Biological Research, 48, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borel, F., Konstantinova, P., & Jansen, P. L. M. (2012). Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. Journal of Hepatology, 56, 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Manriquez, L. M., Carrasco-Morales, O., Sanchez, Z. E. A., Osorio-Perez, S. M., Estrada-Meza, C., Pathak, S., Banerjee, A., Bandyopadhyay, A., Duttaroy, A. K., & Paul, S. (2022). MicroRNA-mediated regulation of key signaling pathways in hepatocellular carcinoma: A mechanistic insight. Frontiers in Genetics, 13, 910733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J., Zhang, J., Pang, X., et al. (2021). MiR-205-5p suppresses angiogenesis in gastric cancer by downregulating the expression of VEGFA and FGF1. Experimental Cell Research, 404, 112579.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the study conception and design. Methodology: AUT, PB; Analysis and investigation: AUT, PB. Writing-original draft preparation: AUT; Writing-review and editing: SKS, PB; Supervision: SKS, PB.

Corresponding author

Correspondence to Parveen Bansal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro, A.U., Shukla, S.K. & Bansal, P. Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol Biotechnol 65, 1178–1186 (2023). https://doi.org/10.1007/s12033-022-00619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00619-5

Keywords

Navigation