Skip to main content
Log in

The Improvement of Epothilone D Yield by the Disruption of epoK Gene in Sorangium cellulosum Using TALEN System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Epothilones are a kind of 16-member macrolides with strong anticancer activity, which was produced by Sorangium cellulosum. Epothlione D shows better drug resistance and safety than taxol in clinical trials. However, the low yield of epothilone D in Sorangium cellulosum and thereof toxicity limited the application of epothilone D. In this study, the epoK gene in gene cluster for epothilone was firstly inactivated by the employment of TALEN gene knockout system. The qRT-PCR analysis and sequencing were performed to confirm the gene deletion of epoK, resulting in the epothilone D yield improvement by 34.9±1.6% and the decrease of epothilone B yield by 34.2±2.5%, which was demonstrated by LC–MS analysis. This study would lay a foundation for the yield improvement of epothilones D, B and thereof derivatives in S. cellulosum by genetic engineering, thus promoting the applications of epothilones in the field of anticancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Höfle, G., Bedorf, N., Steinmetz, H., Schomburg, D., Gerth, K., & Reichenbach, H. (1996). Epothilone A and B-novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angewandte Chemie, 35, 1567–1569.

    Article  Google Scholar 

  2. Bollag, D. M., McQueney, P. A., Zhu, J., Hensens, O., Koupal, L., Liesch, J., Goeta, M., Lazarides, E., & Woods, C. M. (1995). Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Research, 55, 2325–2333.

    CAS  Google Scholar 

  3. Goodin, S., Kane, M. P., & Rubin, E. H. (2004). Epothilones: Mechanism of action and biologic activity. Journal of Clinical Oncology, 22, 2015–2025.

    Article  CAS  Google Scholar 

  4. Sepp-Lorenzino, L., Balog, A., Su, D.-S., Meng, D., Timaul, D., Danishefsky, S. J., & Rosen, N. (1999). The microtubule-stabilizing agents epothilones A and B and their desoxy-derivatives induce mitotic arrest and apoptosis in human prostate cancer cells. Prostate Cancer and Prostatic Diseases, 2, 41–52.

    Article  CAS  Google Scholar 

  5. Oehler, C., Frei, K., Rushing, E. J., McSheehy, P. M., Weber, D., Allegrini, P. R., Weniger, D., Lutolf, U. M., Knuth, A., & Yonekawa, Y. (2012). Patupilone (epothilone B) for recurrent glioblastoma: Clinical outcome and translational analysis of a single-institution phase I/II trial. Oncology, 83, 1–9.

    Article  CAS  Google Scholar 

  6. Nicolaou, K. C., Vourloumis, D., Li, T., Pastor, J., & Finlay, M. R. V. (2010). Designed epothilones: Combinatorial synthesis, tubulin assembly properties, and cytotoxic action against taxol-resistant tumor cells. Angewandte Chemie, 36(19), 2097–2103.

    Article  Google Scholar 

  7. Gupta, D., & Mani, S. (2009). The efficacy and safety of ixabepilone monotherapy in the treatment of breast and gynecologic malignancies. Drug Safety Evaluations, 8, 81–88.

    CAS  Google Scholar 

  8. Wang, L. J., & Hai-Feng, H. U. (2011). Research progress of epothilone B, D and their derivatives. World of Clinical Drugs, 7, 416–419.

    Google Scholar 

  9. Wessjohann LA, Scheid G, Bornscheuer U, Henke E, Kuit W, Orru R (2006). Epothilone synthesis components i: asymmetrically substituted acyloins and acyloin derivatives, method for the production thereof and method for the production of epithilone and epothilone derivatives. EP. EP1358144.

  10. Brunden, K. R., Zhang, B., Carroll, J., Yao, Y., Potuzak, J. S., Hogan, A., Iba, M., James, M. J., Xie, S. X., & Ballatore, C. (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. Journal of Neuroscience, 30(41), 13861–13866.

    Article  CAS  Google Scholar 

  11. Xue, W., Zhang, H., Fan, Y., & Xiao, Z. (2021). Dai J (2021) Upregulation of apol8 by epothilone D facilitates the neuronal relay of transplanted NSCs in spinal cord injury. Stem Cell Research & Therapy, 12, 300.

    Article  CAS  Google Scholar 

  12. Julien, B., Shah, S., Ziermann, R., Goldman, R., Katz, L., & Khosla, C. (2000). Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene, 249, 153–160.

    Article  CAS  Google Scholar 

  13. Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., & Julien, B. (2000). Cloning and heterologous expression of the epothilone gene cluster. Science, 287, 640–642.

    Article  CAS  Google Scholar 

  14. Julien, B., & Shah, S. (2002). Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chem, 46, 2772–2778.

    Article  CAS  Google Scholar 

  15. Mutka, S. C., Carney, J. R., Liu, Y., & Kennedy, J. (2006). Heterologous production of epothilone C and D in Escherichia coli. Biochemistry, 45, 1321–1330.

    Article  CAS  Google Scholar 

  16. Gerth, K., Pradella, S., Perlova, O., Beyer, S., & Muller, R. (2003). Myxobacteria proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. Journal of Biotechnology, 106(3), 233–253.

    Article  CAS  Google Scholar 

  17. Jaoua, S., Neff, S., & Schupp, T. (1992). Transfer of mobilizable plasmids to Sorangium cellosum and evidence for their integration into the chromosome. Plasmid, 28, 157–165.

    Article  CAS  Google Scholar 

  18. Xia, Z., Wang, J., Hu, W., Liu, H., Gao, X., Wu, Z., Zhang, P., & Li, Y. (2008). Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. Journal of Microbiology and Biotechnology, 35, 1157–1163.

    CAS  Google Scholar 

  19. Han, S. J., Park, S. W., Park, B., & Sim, S. J. (2008). Selective production of epothilone B by heterologous expression of propionyl-CoA synthetase in Sorangium cellulosum. Journal of Microbiology and Biotechnology, 18, 135–137.

    CAS  Google Scholar 

  20. Ye, W., Zhang, W. M., Chen, Y. C., Li, H. H., Li, S. N., & Pan, Q. L. (2016). A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of vgb epoF genes. Journal of Microbiology and Biotechnology, 43(5), 1–10.

    CAS  Google Scholar 

  21. Ye, W., Liu, T. M., Zhu, M. Z., Zhang, W. M., Huang, Z. L., & Li, S. N. (2019). An easy and efficient strategy for the enhancement of epothilone production mediated by TALE-TF and CRISPR/dCas9 systems in Sorangium cellulosum. Frontiers in Bioengineering Biotechnology, 7, 334.

    Article  Google Scholar 

  22. Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A TAL effector toolbox for genome engineering. Nature Protocols, 7, 171–192.

    Article  CAS  Google Scholar 

  23. Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J., Shi, Y., & Yan, N. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335, 720–723.

    Article  CAS  Google Scholar 

  24. Uhde-Stone, C., Huang, J., & Lu, B. (2012). A robust dual reporter system to visualize and quantify gene expression mediated by transcription activator-like effectors. Biological Procedures Online, 14, 1–8.

    Article  Google Scholar 

  25. Uhde-stone, C., Cheung, E., & Lu, B. (2014). TALE activators regulate gene expression in a position—and strand-dependent manner in mammalian cells. Biochemical and Biophysical Research Communications, 443, 1189–1194.

    Article  CAS  Google Scholar 

  26. Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49–55.

    Article  CAS  Google Scholar 

  27. Ye, W., Zhang, W. M., Liu, T. M., Tan, G. H., Li, H. H., & Huang, Z. L. (2016). Improvement of ethanol production in Saccharomyces cerevisiae by high-efficient disruption of the adh2 gene using a novel recombinant talen vector. Frontiers in Microbiology, 7, 1067.

    Article  Google Scholar 

  28. Molnar, I., Schupp, T., Ono, M., Zirkle, R., Milnamow, M., Nowak-Thompson, B., Engel, N., Toupet, C., Stratmann, A., & Cyr, D. D. (2000). The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Bio, 7, 97–109.

    Article  CAS  Google Scholar 

  29. Pradella, S., Hans, A., Spröer, C., Reichenbach, H., Gerth, K., & Beyer, S. (2002). Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Archives Microbiol, 178, 484–492.

    Article  CAS  Google Scholar 

  30. Liang, J. H., Wang, H. M., Bian, X. Y., Zhang, Y. M., Zhao, G. P., & Ding, X. M. (2020). Heterologous redox partners supporting the efficient catalysis of epothilone B biosynthesis by EpoK in Schlegelella brevitalea. Microbial Cell Factories, 19, 1–13.

    Article  Google Scholar 

  31. Zhu, L., Li, Z., Sun, X., Li, S., & Li, Y. (2013). Characteristics and activity analysis of epothilone operon promoters from Sorangium cellulosum strains in Escherichia coli. Applied Microbiology and Biotechnology, 97, 1–10.

    Article  Google Scholar 

  32. Bian, X. Y., Tang, B., Yu, Y. C., Tu, Q., Gross, F., Wang, H. L., Li, A. Y., Fu, J., Shen, Y. M., Li, Y. Z., Stewart, A. F., Zhao, G. P., Ding, X. M., Muller, R., & Zhang, Y. M. (2017). Heterologous production and yields improvement of epothilones in the Burkholderiales strain DSM 7029. ACS Chemical Biology, 12(7), 1805–1812.

    Article  CAS  Google Scholar 

  33. Yu, Y., Wang, H., Tang, B., Liang, J., & Ding, X. (2020). Reassembly of the biosynthetic gene cluster enables high epothilone yield in engineered Schlegelella brevitalea. ACS Synthetic Biology, 9, 2009–2022.

    Article  CAS  Google Scholar 

  34. Qiu L (2010) Isolation of Sorangium cellulosum and bioactivity of secondary metabolites. Dissertations & Theses-Gradworks.

Download references

Acknowledgements

We also thank Ye Zhenggui for his help.

Funding

This research was funded by the National Natural Science Foundation of China (Grant Nos. 31500037, 31800063, 41906106), the Natural Science Foundation of Guangdong province (2019A1515011829, 2019A1515011702), the GDAS Project of Science and Technology Development (2020GDASYL-20200105001), and the Guangdong Special Support Program (2019TQ05Y375).

Author information

Authors and Affiliations

Authors

Contributions

WY and WMZ conceived and designed the research and revised the manuscript. WY and TML conducted the experiments. SNL and HHL contributed strains. WY, TML, and WYZ analyzed the data. WY wrote the manuscript. . All authors read and approved the manuscript.

Corresponding author

Correspondence to Wei-Min Zhang.

Ethics declarations

Conflict of interest

All the authors declared no conflict of interest.

Ethical Approval

No ethical experiment was involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Liu, T., Zhang, WM. et al. The Improvement of Epothilone D Yield by the Disruption of epoK Gene in Sorangium cellulosum Using TALEN System. Mol Biotechnol 65, 282–289 (2023). https://doi.org/10.1007/s12033-022-00602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00602-0

Keywords

Navigation