Skip to main content
Log in

Identification and Preliminary Characterization of a Novel Single-Stranded DNA Binding Protein of Staphylococcus aureus Phage Phi11 Expressed in Escherichia coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacteriophage Phi11 harbors a gene, gp13, encoding the putative SSB protein (GenBank accession no. NC_004615.1). SSB proteins bind to and protect the single-stranded DNA molecules from nuclease digestion and are essential for the growth and metabolic activities of the organisms encoding them. In this investigation, we have carried out the cloning, recombinant expression, and purification of rGp13 for the first time in Escherichia coli. EMSA data indicated that the purified recombinant Gp13 protein was capable of binding to single-stranded DNA. The protein exhibited maximum binding activity at 32 °C. Furthermore, our bioinformatic analysis has revealed that Gp13 consists of an OB-fold, a characteristic of SSB proteins. However, the arrangement of the OB-fold is unique, being located in the C-terminal domain of Gp13. Despite the importance of SSB proteins in various metabolic processes as well as in various types of PCR, there are no reports on the purification and characterization of SSB proteins from staphylococcal bacteriophages. We expect that the purification and characterization of recombinant Gp13 will help us gain a better insight into its biological activity and make it available in large quantities for molecular biology work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Conserved Domain

DNA:

Deoxyribonucleic acid

E. coli:

Escherichia coli

EMSA:

Electrophoretic mobility shift assay

IDT:

Integrated DNA Technologies

IMAC:

Immobilized metal affinity chromatography

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

NCBI:

National Center for Biotechnology Information

Ni–NTA:

Nickel Nitrilotriacetic Acid

OB fold:

Oligosaccharide/ oligonucleotide/ oligopeptide binding fold

PCR:

Polymerase Chain Reaction

PMSF:

Phenylmethane sulfonyl fluoride

RT PCR:

Real Time Polymerase Chain Reaction

S. aureus:

Staphylococcus aureus

SDS-PAGE:

Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis

SSB:

Single-stranded DNA binding protein

References

  1. Wold, M. S. (1997). Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annual Review of Biochemistry, 66, 61–92. https://doi.org/10.1146/annurev.biochem.66.1.61

    Article  CAS  PubMed  Google Scholar 

  2. Lohman, T. M., & Ferrari, M. E. (1994). Escherichia coli single-stranded DNA-binding protein: Multiple DNA-binding modes and cooperativities. Annual Review of Biochemistry, 63, 527–570. https://doi.org/10.1146/annurev.bi.63.070194.002523

    Article  CAS  PubMed  Google Scholar 

  3. Cha, T. A., & Alberts, B. M. (1989). The bacteriophage T4 DNA replication fork: Only DNA helicase is required for leading strand DNA synthesis by the DNA polymerase holoenzyme. Journal of Biological Chemistry, 264(21), 12220–12225.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. T., & Richardson, C. C. (1993). Bacteriophage T7 gene 2.5 protein: An essential protein for DNA replication. Proceedings of the National Academy of Sciences USA, 90(21), 10173–10177. https://doi.org/10.1073/pnas.90.21.10173

    Article  CAS  Google Scholar 

  5. Chase, J. W., & Williams, K. R. (1986). Single-stranded DNA binding proteins required for DNA replication. Annual Review of Biochemistry, 55, 103–136. https://doi.org/10.1146/annurev.bi.55.070186.000535

    Article  CAS  PubMed  Google Scholar 

  6. Zou, Y., Liu, Y., Wu, X., & Shell, S. M. (2006). Functions of human replication protein A (RPA): From DNA replication to DNA damage and stress responses. Journal of Cellular Physiology, 208(2), 267–273. https://doi.org/10.1002/jcp.20622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pestryakov, P. E., & Lavrik, O. I. (2008). Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism. Biochemistry (Moscow), 73(13), 1388–1404. https://doi.org/10.1134/s0006297908130026

    Article  CAS  PubMed  Google Scholar 

  8. Weiner, J. H., Bertsch, L. L., & Kornberg, A. (1975). The deoxyribonucleic acid unwinding protein of Escherichia coli: Properties and function in replication. Journal of Biological Chemistry, 250(6), 1972–1980. PMID: 1090613.

    Article  CAS  PubMed  Google Scholar 

  9. Olszewski, M., Mickiewicz, M., & Kur, J. (2008). Two highly thermostable paralogous single-stranded DNA-binding proteins from Thermoanaerobacter tengcongensis. Archives of Microbiology, 190(1), 79–87. https://doi.org/10.1007/s00203-008-0366-6

    Article  CAS  PubMed  Google Scholar 

  10. Olszewski, M., Grot, A., Wojciechowski, M., Nowak, M., Mickiewicz, M., & Kur, J. (2010). Characterization of exception ally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana. BMC Microbiology, 10, 260. https://doi.org/10.1186/1471-2180-10-260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bochkarev, A., & Bochkareva, E. (2004). From RPA to BRCA2: Lessons from single-stranded DNA binding by the OB-fold. Current Opinion in Structural Biology, 14(1), 36–42. https://doi.org/10.1016/j.sbi.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  12. Krejci, L., & Sung, P. (2002). RPA not that different from SSB. Structure., 10(5), 601–602. https://doi.org/10.1016/s0969-2126(02)00765-7

    Article  CAS  PubMed  Google Scholar 

  13. Murzin, A. G. (1993). OB (oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences. EMBO Journal, 12(3), 861–867. PMID: 8458342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Purnapatre, K., & Varshney, U. (1999). Cloning, over-expression and biochemical characterization of the single-stranded DNA binding protein from mycobacterium tuberculosis. European Journal of Biochemistry, 264(2), 591–598.

    Article  CAS  PubMed  Google Scholar 

  15. Flynn, R. L., & Zou, L. (2010). Oligonucleotide/ oligosaccharide-binding fold proteins: A growing family of genome guardians. Critical Reviews in Biochemistry and Molecular Biology, 45(4), 266–275. https://doi.org/10.3109/10409238.2010.488216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Theobald, D. L., Mitton-Fry, R. M., & Wuttke, D. S. (2003). Nucleic acid recognition by OB-fold proteins. Annual Review of Biophysics and Biomolecular Structure, 32, 115–133. https://doi.org/10.1146/annurev.biophys.32.110601.142506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Perales, C., Cava, F., Meijer, W. J. J., & Berenguer, J. (2003). Enhancement of DNA, cDNA synthesis and fidelity at high temperatures by a dimeric single-stranded DNA-binding protein. Nucleic Acids Research, 31(22), 6473–6480. https://doi.org/10.1093/nar/gkg865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lohman, T. M., Green, J. M., & Beyer, R. S. (1986). Large-scale overproduction and rapid purification of the Escherichia coli ssb gene product: Expression of the ssb gene under lambda. PL control. Biochemistry, 25(1), 21–25. https://doi.org/10.1021/bi00349a004

    Article  CAS  PubMed  Google Scholar 

  19. Russell, D. W., & Sambrook, J. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  20. Lee, C. Y., & Iandolo, J. J. (1986). Integration of staphylococcal phage L54a occurs by site-specific recombination: Structural analysis of the attachment sites. Proceedings of the National academy of Sciences of the United States of America, 83(15), 5474–5478. https://doi.org/10.1073/pnas.83.15.5474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee, C., & Iandolo, J. (1988). Structural analysis of staphylococcal bacteriophage phi 11 attachment sites. Journal of Bacteriology, 170(5), 2409–2411. https://doi.org/10.1128/jb.170.5.2409-2411.1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K., Eds. (1998). In current protocols in molecular biology. 2:10.0.1–10.22.24 and 12.0.1–12.2.11 copyright by John Wiley & Sons, Inc.

  23. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., et al. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res., 45, 200–203. https://doi.org/10.1093/nar/gku1221

    Article  CAS  Google Scholar 

  24. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., et al. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43, 222–6. https://doi.org/10.1093/nar/gku1221

    Article  CAS  Google Scholar 

  25. Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., et al. (2011). CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 39, 225–9. https://doi.org/10.1093/nar/gkq1189

    Article  CAS  Google Scholar 

  26. Marchler-Bauer, A., & Bryant, S. H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Research, 32, 327–331. https://doi.org/10.1093/nar/gkh454

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry., 72, 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  28. Das, A., & Biswas, M. (2016). Changes in the functional activity of phi11 cro protein is mediated by various ions. Protein Journal, 35(6), 407–415. https://doi.org/10.1007/s10930-016-9684-8

    Article  CAS  PubMed  Google Scholar 

  29. Hemmadi, V., Das, A., Chouhan, O. P., Biswas, S., & Biswas, M. (2019). Effect of ions and inhibitors on the catalytic activity and structural stability of S aureus enolase. Journal of Biosciences., 44(4), 90. PMID: 31502568.

    Article  PubMed  Google Scholar 

  30. Micsonai, A., Wien, F., Kernya, L., Lee, Y. H., Goto, Y., Réfrégiers, M., & Kardos, J. (2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences USA, 112(24), E3095–E3103.

    Article  CAS  Google Scholar 

  31. Micsonai, A., Wien, F., Bulyaki, É., Kun, J., Moussong, É., Lee, Y. H., Goto, Y., Réfrégiers, M., & Kardos, J. (2018). BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46(W1), W315–W322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Genschel, J., Curth, U., & Urbanke, C. (2000). Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I: The carboxy-terminus of SSB is the recognition site for the nuclease. Journal of Biological Chemistry, 381(3), 183–192. https://doi.org/10.1515/BC.2000.025

    Article  CAS  Google Scholar 

  33. Curth, U., Genschel, J., Urbanke, C., & Greipel, J. (1996). In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Research, 24(14), 2706–2711. https://doi.org/10.1093/nar/24.14.2706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wadsworth, R. I. M., & White, M. F. (2001). Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Research, 29, 914–920. https://doi.org/10.1093/nar/29.4.914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Meyer, R. R., & Laine, P. S. (1990). The single-stranded DNA-binding protein of Escherichia coli. Microbiological Reviews, 54(4), 342–380. https://doi.org/10.1128/mr.54.4.342-380.1990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wold, M. S., Mallory, J. B., Roberts, J. D., LeBowitz, J. H., & McMacken, R. (1982). Initiation of bacteriophage lambda DNA replication in vitro with purified lambda replication proteins. Proceedings of the National Academy of Sciences of the United States of America, 79, 6176–6180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dodson, M., McMacken, R., & Echols, H. (1989). Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: Protein association and dissociation reactions responsible for localized initiation of replication. Journal of Biological Chemistry, 264, 10719–10725.

    Article  CAS  PubMed  Google Scholar 

  38. Tone, T., Takeuchi, A., & Makino, O. (2012). Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion. Bioscience, Biotechnology, and Biochemistry, 76(12), 2351–2353. https://doi.org/10.1271/bbb.120587

    Article  CAS  PubMed  Google Scholar 

  39. Hollis, T., Stattel, J. M., Walther, D. S., Richardson, C. C., & Ellenberger, T. (2001). Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophageT7. Proceedings of the National academy of Sciences of the United States of America, 98, 9557–9562152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hernandez, A. J., & Richardson, C. C. (2019). Gp2.5, the multifunctional bacteriophageT7 single-stranded DNA binding protein. Seminars in Cell & Developmental Biology, 86, 92–101.

    Article  CAS  Google Scholar 

  41. Lee, S. J., Marintcheva, B., Hamdan, S. M., & Richardson, C. C. (2006). The C-terminal residues of bacteriophage T7 gene 4 helicase primase coordinate helicase and DNA polymerase activities. Journal of Biological Chemistry, 281, 25841–25849.

    Article  CAS  PubMed  Google Scholar 

  42. Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M., & Keck, J. L. (2008). SSB as an organizer/mobilizer of genome maintenance complexes. Critical Reviews in Biochemistry and Molecular Biology, 43(5), 289–318. https://doi.org/10.1080/10409230802341296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge the University Grants Commission, New Delhi, for the financial assistance in the form of Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF), which supported the study.

Funding

This work was supported by the financial assistance from the Department of Science and Technology, Govt. of India (Sanction No. CRG/2020/004968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malabika Biswas.

Ethics declarations

Conflict of Interest

There is no conflict of interest regarding the publication of this paper.

Ethical Approval

This article does not contain descriptions of studies performed by the authors with the participation of humans or using animals as objects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 382 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratre, V., Hemmadi, V., Biswas, S. et al. Identification and Preliminary Characterization of a Novel Single-Stranded DNA Binding Protein of Staphylococcus aureus Phage Phi11 Expressed in Escherichia coli. Mol Biotechnol 65, 922–933 (2023). https://doi.org/10.1007/s12033-022-00598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00598-7

Keywords

Navigation