Skip to main content

Advertisement

Log in

MiR-29c-3p/C1QTNF6 Restrains the Angiogenesis and Cell Proliferation, Migration and Invasion in Head and Neck Squamous Cell Carcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In our research, we studied the regulatory effect of miR-29c-3p on HNSCC progression. First, bioinformatics approach was utilized to find significantly differentially expressed genes in The Cancer Genome Atlas-HNSCC. Then the target miRNA and its target mRNA were screened out. Next, qRT-PCR was utilized to examine miR-29c-3p expression in HNSCC and the adjacent tissue. Western blot was introduced to test the protein level of C1QTNF6. Besides, the results of MTT, wound healing, transwell and angiogenesis assays verified the proliferation, migration, invasion and angiogenesis of HNSCC cells. Finally, the targeted relationship of miR-29c-3p and C1QTNF6 was confirmed through dual-luciferase assay. Our study found the negative correlation of miR-29c-3p and C1QTNF6 in HNSCC. Besides, overexpressed miR-29c-3p suppressed proliferation, migration, invasion, and angiogenesis of HNSCC cells. Additionally, overexpressed C1QTNF6 facilitated these biological functions of HNSCC cells while upregulating miR-29c-3p reversed such effect. Altogether, miR-29c-3p was proven to suppress the tumor-promoting effects and angiogenesis in HNSCC by targeting C1QTNF6. We also revealed a novel mechanism of HNSCC progression. MiR-29c-3p/C1QTNF6 might be a target in HNSCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McDermott, J. D., & Bowles, D. W. (2019). Epidemiology of head and neck squamous cell carcinomas: Impact on staging and prevention strategies. Current Treatment Options in Oncology, 20, 43. https://doi.org/10.1007/s11864-019-0650-5

    Article  PubMed  Google Scholar 

  2. Gillison, M. L., et al. (2008). Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. Journal of the National Cancer Institute, 100, 407–420. https://doi.org/10.1093/jnci/djn025

    Article  PubMed  Google Scholar 

  3. Rettig, E. M., & D’Souza, G. (2015). Epidemiology of head and neck cancer. Surgical Oncology Clinics of North America, 24, 379–396. https://doi.org/10.1016/j.soc.2015.03.001

    Article  PubMed  Google Scholar 

  4. Takes, R. P., et al. (2012). Distant metastases from head and neck squamous cell carcinoma Part I. Basic aspects. Oral Oncology, 48, 775–779. https://doi.org/10.1016/j.oraloncology.2012.03.013

    Article  PubMed  Google Scholar 

  5. Sinha, P., et al. (2014). Distant metastasis in p16-positive oropharyngeal squamous cell carcinoma: A critical analysis of patterns and outcomes. Oral Oncology, 50, 45–51. https://doi.org/10.1016/j.oraloncology.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Bauer, E., et al. (2020). Extranodal extension is a strong prognosticator in HPV-positive oropharyngeal squamous cell carcinoma. The Laryngoscope, 130, 939–945. https://doi.org/10.1002/lary.28059

    Article  CAS  PubMed  Google Scholar 

  7. Sato, S., et al. (2019). EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. https://doi.org/10.1172/jci.insight.132447

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257. https://doi.org/10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  9. Bagnasco, L., et al. (2012). Role of angiogenesis inhibitors in colorectal cancer: Sensitive and insensitive tumors. Current Cancer Drug Targets, 12, 303–315. https://doi.org/10.2174/156800912800190929

    Article  CAS  PubMed  Google Scholar 

  10. Irimie-Aghiorghiesei, A. I., et al. (2019). Prognostic value of MiR-21: An updated meta-analysis in head and neck squamous cell carcinoma (HNSCC). Journal of Clinical Medicine. https://doi.org/10.3390/jcm8122041

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., et al. (2017). MiR-34a suppresses HNSCC growth through modulating cell cycle arrest and senescence. Neoplasma, 64, 543–553. https://doi.org/10.4149/neo_2017_408

    Article  CAS  PubMed  Google Scholar 

  12. Vahabi, M., et al. (2019). miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. Journal of Experimental & Clinical Cancer Research, 38, 141. https://doi.org/10.1186/s13046-019-1119-x

    Article  Google Scholar 

  13. Kolenda, T., Guglas, K., Teresiak, A., Blizniak, R., & Lamperska, K. (2019). Low let-7d and high miR-205 expression levels positively influence HNSCC patient outcome. Journal of Biomedical Science, 26, 17. https://doi.org/10.1186/s12929-019-0511-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hayes, J., Peruzzi, P. P., & Lawler, S. (2014). MicroRNAs in cancer: Biomarkers, functions and therapy. Trends in Molecular Medicine, 20, 460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews. Drug Discovery, 9, 775–789. https://doi.org/10.1038/nrd3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kinoshita, T., et al. (2013). Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. British Journal of Cancer, 109, 2636–2645. https://doi.org/10.1038/bjc.2013.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y., et al. (2020). TUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signaling. Stem Cell Research & Therapy, 11, 441. https://doi.org/10.1186/s13287-020-01958-3

    Article  CAS  Google Scholar 

  18. Chen, C., et al. (2020). The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. Journal of Experimental & Clinical Cancer Research, 39, 91. https://doi.org/10.1186/s13046-020-01594-y

    Article  CAS  Google Scholar 

  19. Lee, W., Kim, M. J., Park, E. J., Choi, Y. J., & Park, S. Y. (2010). C1qTNF-related protein-6 mediates fatty acid oxidation via the activation of the AMP-activated protein kinase. FEBS Letters, 584, 968–972. https://doi.org/10.1016/j.febslet.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  20. Wong, G. W., et al. (2008). Molecular, biochemical and functional characterizations of C1q/TNF family members: Adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. The Biochemical Journal, 416, 161–177. https://doi.org/10.1042/BJ20081240

    Article  CAS  PubMed  Google Scholar 

  21. Murayama, M. A., et al. (2015). CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nature Communications, 6, 8483. https://doi.org/10.1038/ncomms9483

    Article  CAS  PubMed  Google Scholar 

  22. Qu, H. X., et al. (2019). C1QTNF6 is overexpressed in gastric carcinoma and contributes to the proliferation and migration of gastric carcinoma cells. International Journal of Molecular Medicine, 43, 621–629. https://doi.org/10.3892/ijmm.2018.3978

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L., Liu, Z., Duan, L., Ma, B., & Sun, Z. (2015). C1q tumor necrosis factor-related protein 6 (CTRP6) inhibits the proliferation and migration of ovarian cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 31, 1664–1668.

    CAS  PubMed  Google Scholar 

  24. Wang, H., et al. (2020). MiR-29c-3p suppresses the migration, invasion and cell cycle in esophageal carcinoma via CCNA2/p53 axis. Frontiers in Bioengineering and Biotechnology, 8, 75. https://doi.org/10.3389/fbioe.2020.00075

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y., Liu, G., Ren, L., Wang, K., & Liu, A. (2019). Long non-coding RNA TUG1 recruits miR29c3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells. International Journal of Oncology, 54, 1317–1326. https://doi.org/10.3892/ijo.2019.4699

    Article  CAS  PubMed  Google Scholar 

  26. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, L. M., et al. (2018). MiR-135a-5p represses proliferation of HNSCC by targeting HOXA10. Cancer Biology & Therapy, 19, 973–983. https://doi.org/10.1080/15384047.2018.1450112

    Article  CAS  Google Scholar 

  28. Fang, R., Huang, Y., Xie, J., Zhang, J., & Ji, X. (2019). Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma. Diagnostic Pathology, 14, 109. https://doi.org/10.1186/s13000-019-0893-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han, M., Wang, B., Zhu, M., & Zhang, Y. (2019). C1QTNF6 as a novel biomarker regulates cellular behaviors in A549 cells and exacerbates the outcome of lung adenocarcinoma patients. In Vitro Cellular & Developmental Biology Animal, 55, 614–621. https://doi.org/10.1007/s11626-019-00377-w

    Article  CAS  Google Scholar 

  30. Takeuchi, T., Adachi, Y., & Nagayama, T. (2011). Expression of a secretory protein C1qTNF6, a C1qTNF family member, in hepatocellular carcinoma. Analytical Cellular Pathology (Amsterdam), 34, 113–121. https://doi.org/10.3233/ACP-2011-009

    Article  CAS  PubMed  Google Scholar 

  31. Wan, X., Zheng, C., & Dong, L. (2019). Inhibition of CTRP6 prevented survival and migration in hepatocellular carcinoma through inactivating the AKT signaling pathway. Journal of Cellular Biochemistry, 120, 17059–17066. https://doi.org/10.1002/jcb.28967

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by Scientific Research Project of Hunan Provincial Health Commission (No. 20200216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Qi, H. MiR-29c-3p/C1QTNF6 Restrains the Angiogenesis and Cell Proliferation, Migration and Invasion in Head and Neck Squamous Cell Carcinoma. Mol Biotechnol 65, 913–921 (2023). https://doi.org/10.1007/s12033-022-00591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00591-0

Keywords

Navigation