Skip to main content

Advertisement

Log in

Effects of Different Preparation Methods on Microbiota Composition of Fecal Suspension

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fecal microbiota transplantation is an emerging disease-modifying therapy. The viability of the microbiome in feces and its successful transfer depends on the preparation of fecal microbiota suspension. However, currently, no standard operation procedure is proposed for fecal suspension preparation. This study aims to compare the effect of different preparation methods on the composition of fecal microbiota composition in the rat. Four methods were used to collect the fecal suspension from fresh rat fecal (Group A), including stirring with normal saline (Group B), stirring with normal saline and then standing (Group C), stirring with normal saline and filtered with gauze (Group D), and stirring with normal saline and centrifuged (Group E). 16S ribosomal RNA gene (16S rDNA) sequencing technology was used to analyze the microbiota diversity and composition of each group of samples. Compared with fresh feces, the bacterial richness of the fecal suspension obtained by the four methods was significantly decreased (P < 0.05). The structural similarity with fresh fecal microbiota from high to low is groups B, D, C, and E. All four methods changed the microbiota structure to varying degrees, thus may affect the effect of FMT. In conclusion, choosing different methods to prepare fecal suspensions may help to better optimize the application of FMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data generated in the study have been uploaded to the NCBI Sequence Read Archive (SRA) under accession PRJNA827478. Now the data are available for reviewers (https://dataview.ncbi.nlm.nih.gov/object/PRJNA827478?reviewer=lqau50mvmdm0jilpgasc99ln3r).

References

  1. Martin, R., Miquel, S., Langella, P., & Bermudez-Humaran, L. G. (2014). The role of metagenomics in understanding the human microbiome in health and disease. Virulence, 5, 413–423.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fehily, S. R., Basnayake, C., Wright, E. K., & Kamm, M. A. (2021). Fecal microbiota transplantation therapy in Crohn’s disease: Systematic review. Journal of Gastroenterology and Hepatology, 36, 2672–2686.

    Article  CAS  PubMed  Google Scholar 

  3. Aira, A., Rubio, E., Vergara Gomez, A., Feher, C., Casals-Pascual, C., Gonzalez, B., Morata, L., Rico, V., & Soriano, A. (2021). rUTI resolution after FMT for Clostridioides difficile Infection: A case report. Infectious Diseases and Therapy, 10, 1065–1071.

    Article  PubMed  Google Scholar 

  4. Danne, C., Rolhion, N., & Sokol, H. (2021). Recipient factors in faecal microbiota transplantation: One stool does not fit all. Nature Reviews. Gastroenterology & Hepatology, 18, 503–513.

    Article  Google Scholar 

  5. Cui, B., Xu, F., & Zhang, F. (2016). Methodology, not concept of fecal microbiota transplantation, affects clinical findings. Gastroenterology, 150, 285–286.

    Article  PubMed  Google Scholar 

  6. Zhang, X. Y., Chen, Q. Y., Li, N., & Qin, H. L. (2020) [Indication selection and clinical application strategies of fecal microbiota transplantation]. Zhonghua Wei Chang Wai Ke Za Zhi = Chinese Journal of Gastrointestinal Surgery, 23, 509–515.

  7. Papanicolas, L. E., Choo, J. M., Wang, Y., Leong, L. E. X., Costello, S. P., Gordon, D. L., Wesselingh, S. L., & Rogers, G. B. (2019). Bacterial viability in faecal transplants: Which bacteria survive? eBioMedicine, 41, 509–516.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin, C., Wan, J., Lu, Y., Zhang, H., Chen, X., Su, Y., & Zhu, W. (2019). Active bacterial communities of pig fecal microbiota transplantation suspension prepared and preserved under different conditions. AMB Express, 9, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu, Z., Huang, S., Li, T., Li, N., Han, D., Zhang, B., Xu, Z. Z., Zhang, S., Pang, J., Wang, S., Zhang, G., Zhao, J., & Wang, J. (2021). Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome, 9, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhong, Y., Cao, J., Deng, Z., Ma, Y., Liu, J., & Wang, H. (2021). Effect of fiber and fecal microbiota transplantation donor on recipient mice gut microbiota. Frontiers in Microbiology, 12, 757372.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou, D., Pan, Q., Shen, F., Cao, H. X., Ding, W. J., Chen, Y. W., & Fan, J. G. (2017). Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Science and Reports, 7, 1529.

    Article  Google Scholar 

  12. Ding, N., Zhang, X., Zhang, X. D., Jing, J., Liu, S. S., Mu, Y. P., Peng, L. L., Yan, Y. J., Xiao, G. M., Bi, X. Y., Chen, H., Li, F. H., Yao, B., & Zhao, A. Z. (2020). Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut, 69, 1608–1619.

    Article  CAS  PubMed  Google Scholar 

  13. He, Y., Li, X., Yu, H., Ge, Y., Liu, Y., Qin, X., Jiang, M., & Wang, X. (2019). The functional role of fecal microbiota transplantation on dextran sulfate sodium-induced colitis in mice. Frontiers in Cellular and Infection Microbiology, 9, 393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients, 12(5), 1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, X., Tang, T., Wen, J., Li, M., Chen, J., Li, T., Dai, Y., & Cheng, Q. (2021). Effects of S24–7 on the weight of progeny rats after exposure to ceftriaxone sodium during pregnancy. BMC Microbiology, 21, 166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galle, F., Valeriani, F., Cattaruzza, M. S., Gianfranceschi, G., Liguori, R., Antinozzi, M., Mederer, B., Liguori, G., & Romano Spica, V. (2020). Mediterranean diet, physical activity and gut microbiome composition: A cross-sectional study among healthy young italian adults. Nutrients, 12(7), 2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, T., Ding, R., Chen, X., Lu, Y., Shi, J., Lu, Y., Tang, B., Zhang, W., Ye, C., Yuan, M., & Yang, Z. (2021). Firmicutes and Blautia in gut microbiota lessened in chronic liver diseases and hepatocellular carcinoma patients: A pilot study. Bioengineered, 12, 8233–8246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou, Y., Ju, X., Chen, W., Yuan, J., Wang, Z., Aluko, R. E., & He, R. (2020). Rice bran attenuated obesity via alleviating dyslipidemia, browning of white adipocytes and modulating gut microbiota in high-fat diet-induced obese mice. Food & Function, 11, 2406–2417.

    Article  CAS  Google Scholar 

  19. Bervoets, L., Van Hoorenbeeck, K., Kortleven, I., Van Noten, C., Hens, N., Vael, C., Goossens, H., Desager, K. N., & Vankerckhoven, V. (2013). Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathogens, 5, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pinart, M., Dotsch, A., Schlicht, K., Laudes, M., Bouwman, J., Forslund, S. K., Pischon, T., & Nimptsch, K. (2021). Gut microbiome composition in obese and non-obese persons: A systematic review and meta-analysis. Nutrients, 14, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grigor’eva, I. N. (2020). Gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. Journal of Personalized Medicine, 11, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ormerod, K. L., Wood, D. L., Lachner, N., Gellatly, S. L., Daly, J. N., Parsons, J. D., Dal’Molin, C. G., Palfreyman, R. W., Nielsen, L. K., Cooper, M. A., Morrison, M., Hansbro, P. M., & Hugenholtz, P. (2016). Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals. Microbiome, 4, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Osborne, G., Wu, F., Yang, L., Kelly, D., Hu, J., Li, H., Jasmine, F., Kibriya, M. G., Parvez, F., Shaheen, I., Sarwar, G., Ahmed, A., Eunus, M., Islam, T., Pei, Z., Ahsan, H., & Chen, Y. (2020). The association between gut microbiome and anthropometric measurements in Bangladesh. Gut Microbes, 11, 63–76.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, F., Han, W., Zhan, G., Li, S., Jiang, X., Wang, L., Xiang, S., Zhu, B., Yang, L., Luo, A., Hua, F., & Yang, C. (2019). Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging, 11, 10454–10467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Creedon, A. C., Hung, E. S., Berry, S. E., & Whelan, K. (2020). Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients, 12(8), 2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D., & Ma, X. (2018). Butyrate: A double-edged sword for health? Advances in Nutrition, 9, 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coppola, S., Avagliano, C., Calignano, A., & Berni Canani, R. (2021). The protective role of butyrate against obesity and obesity-related diseases. Molecules, 26, 682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J., Ma, Y., Bao, Z., Gui, X., Li, A. N., Yang, Z., & Li, M. D. (2020). Clostridiales are predominant microbes that mediate psychiatric disorders. Journal of Psychiatric Research, 130, 48–56.

    Article  PubMed  Google Scholar 

  30. Kuehne, S. A., Rood, J. I., & Lyras, D. (2019). Clostridial genetics: Genetic manipulation of the pathogenic clostridia. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.GPP3-0040-2018

    Article  PubMed  Google Scholar 

  31. Revitt-Mills, S. A., Vidor, C. J., Watts, T. D., Lyras, D., Rood, J. I., & Adams, V. (2019). Virulence plasmids of the pathogenic clostridia. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.GPP3-0034-2018

    Article  PubMed  Google Scholar 

  32. Krych, L., Hansen, C. H., Hansen, A. K., van den Berg, F. W., & Nielsen, D. S. (2013). Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE, 8, e62578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayorga Reyes, L., Gonzalez Vazquez, R., Cruz Arroyo, S. M., Melendez Avalos, A., Reyes Castillo, P. A., Chavaro Perez, D. A., Ramos Terrones, I., Ramos Ibanez, N., Rodriguez Magallanes, M. M., Langella, P., Bermudez-Humaran, L. G., & Azaola Espinosa, A. (2016). Correlation between diet and gut bacteria in a population of young adults. International Journal of Food Sciences and Nutrition, 67, 470–478.

    Article  PubMed  Google Scholar 

  34. Zhong, Y., Cao, J., Deng, Z., Ma, Y., Liu, J., & Wang, H. (2021). Effect of fiber and fecal microbiota transplantation donor on recipient mice gut microbiota. Fronties in Microbiology, 12, 757372.

    Article  Google Scholar 

Download references

Funding

This research was funded by the Zhejiang Provincial Natural Science Foundation of China (Nos. LGF19H030006 and LQ20H030001), Ningbo Science and Technology Project (No. 2019C50100), and Ningbo Clinical Medicine Research Center Project (No. 2019A21003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ye.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, F., Wang, X., Zheng, W. et al. Effects of Different Preparation Methods on Microbiota Composition of Fecal Suspension. Mol Biotechnol 65, 871–880 (2023). https://doi.org/10.1007/s12033-022-00590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00590-1

Keywords

Navigation