Skip to main content

Advertisement

Log in

miR-196a-5p Correlates with Chronic Atrophic Gastritis Progression to Gastric Cancer and Induces Malignant Biological Behaviors of Gastric Cancer Cells by Targeting ACER2

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Background

As the prognosis of early gastric cancer (EGC) is significantly better than that of advanced gastric cancer (AGC), the development of biomarkers to monitor the progression of chronic atrophic gastritis (CAG) to gastric cancer (GC) is essential.

Methods

Stomach tissue miRNA and mRNA sequences from patients with chronic non-atrophic gastritis (CNAG), CAG, precancerous lesions of gastric cancer (PLGC), and GC were analyzed. A publicly available GC-related miRNA microarray dataset was obtained from the Gene Expression Omnibus database. Spearman’s correlation and differential gene analyses, and clinical validation were used to identify novel miRNAs correlating with CAG progression to GC. miRNA targets were predicted using weighted gene co-expression analysis and databases. A dual-luciferase reporter assay was performed to check for direct interaction between miR-196a-5p and ACER2. The CCK-8 and wound healing assays, and flow cytometry were performed to evaluate cell proliferation, migration, and apoptosis.

Results

miR-196a-5p was correlated with CAG progression to GC. Overexpression of miR-196a-5p promoted GC cell proliferation and migration and inhibited apoptosis, whereas suppression of miR-196a-5p exerted the opposite effect. Based on the prediction and luciferase assays, ACER2 was identified as the target of miR-196a-5p. ACER2 was downregulated in GC cell lines. Knockdown of ACER2 increased GC cell proliferation rates and migration ability and inhibited apoptosis, while ACER2 overexpression led to the opposite effect.

Conclusions

miR-196a-5p correlated with CAG progression to GC and induced malignant biological behaviors of GC cells by targeting ACER2, providing a novel monitoring biomarker and target for GC prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the Gene Expression Omnibus database (GSE93415) and the NCBI Sequence Read Archive with project numbers SRP234371 and SRP234584.

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Lauren, P. (1965). The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathologica et Microbiologica Scandinavica, 64, 31–49. https://doi.org/10.1111/apm.1965.64.1.31

    Article  CAS  PubMed  Google Scholar 

  3. Correa, P. (1988). A human model of gastric carcinogenesis. Cancer Research, 48, 3554–3560.

    CAS  PubMed  Google Scholar 

  4. Gotoda, T., et al. (2000). Incidence of lymph node metastasis from early gastric cancer: Estimation with a large number of cases at two large centers. Gastric Cancer, 3, 219–225. https://doi.org/10.1007/pl00011720

    Article  PubMed  Google Scholar 

  5. Xie, S., et al. (2020). Non-coding RNAs in gastric cancer. Cancer Letters, 493, 55–70. https://doi.org/10.1016/j.canlet.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  6. Winkle, M., El-Daly, S. M., Fabbri, M., & Calin, G. A. (2021). Noncoding RNA therapeutics—Challenges and potential solutions. Nature Reviews Drug Discovery, 20, 629–651. https://doi.org/10.1038/s41573-021-00219-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He, B., et al. (2020). miRNA-based biomarkers, therapies, and resistance in Cancer. International Journal of Biological Sciences, 16, 2628–2647. https://doi.org/10.7150/ijbs.47203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dilsiz, N. (2020). Role of exosomes and exosomal microRNAs in cancer. Future Science OA, 6, Fso465. https://doi.org/10.2144/fsoa-2019-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X., Ma, R., Yi, B., Riker, A. I., & Xi, Y. (2021). MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacologica Sinica, 42, 1018–1026. https://doi.org/10.1038/s41401-020-00540-0

    Article  CAS  PubMed  Google Scholar 

  10. Smolarz, B., Durczyński, A., Romanowicz, H., Szyłło, K., & Hogendorf, P. (2022). miRNAs in cancer (review of literature). International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23052805

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu, S. R., Wu, Q., & Shi, Y. Q. (2020). Recent advances of miRNAs in the development and clinical application of gastric cancer. Chinese Medical Journal (Engl), 133, 1856–1867. https://doi.org/10.1097/cm9.0000000000000921

    Article  CAS  Google Scholar 

  12. Sierzega, M., et al. (2017). Evaluation of serum microRNA biomarkers for gastric cancer based on blood and tissue pools profiling: The importance of miR-21 and miR-331. British Journal of Cancer, 117, 266–273. https://doi.org/10.1038/bjc.2017.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ritchie, M. E., et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Necula, L., et al. (2019). Recent advances in gastric cancer early diagnosis. World Journal of Gastroenterology, 25, 2029–2044. https://doi.org/10.3748/wjg.v25.i17.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asadi, M., et al. (2019). Transcript level of MicroRNA processing elements in gastric cancer. Journal of Gastrointestinal Cancer, 50, 855–859. https://doi.org/10.1007/s12029-018-0154-8

    Article  CAS  PubMed  Google Scholar 

  17. Saliminejad, K., Khorshid, H. R. K., Fard, S. S., & Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology, 234, 5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  18. Hosseinahli, N., Aghapour, M., Duijf, P. H. G., & Baradaran, B. (2018). Treating cancer with microRNA replacement therapy: A literature review. Journal of Cellular Physiology, 233, 5574–5588. https://doi.org/10.1002/jcp.26514

    Article  CAS  PubMed  Google Scholar 

  19. Chen, C., Zhang, Y., Zhang, L., Weakley, S. M., & Yao, Q. (2011). MicroRNA-196: Critical roles and clinical applications in development and cancer. Journal of Cellular and Molecular Medicine, 15, 14–23. https://doi.org/10.1111/j.1582-4934.2010.01219.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pourdavoud, P., et al. (2020). MiR-196: Emerging of a new potential therapeutic target and biomarker in colorectal cancer. Molecular Biology Reports, 47, 9913–9920. https://doi.org/10.1007/s11033-020-05949-8

    Article  CAS  PubMed  Google Scholar 

  21. Pan, Y., et al. (2017). miR-196a-5p modulates gastric cancer stem cell characteristics by targeting Smad4. International Journal of Oncology, 50, 1965–1976. https://doi.org/10.3892/ijo.2017.3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X., et al. (2021). Tumor-associated macrophages secret exosomal miR-155 and miR-196a-5p to promote metastasis of non-small-cell lung cancer. Transl Lung Cancer Res, 10, 1338–1354. https://doi.org/10.21037/tlcr-20-1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xin, H., Wang, C., & Liu, Z. (2019). miR-196a-5p promotes metastasis of colorectal cancer via targeting IκBα. BMC Cancer, 19, 30. https://doi.org/10.1186/s12885-018-5245-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. O'Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology (Lausanne) 9, 402. https://doi.org/10.3389/fendo.2018.00402 (2018).

  25. Duarte, C., Akkaoui, J., Yamada, C., Ho, A., Mao, C., & Movila, A. (2020). Elusive roles of the different ceramidases in human health, pathophysiology, and tissue regeneration. Cells. https://doi.org/10.3390/cells9061379

    Article  PubMed  PubMed Central  Google Scholar 

  26. Futerman, A. H., & Hannun, Y. A. (2004). The complex life of simple sphingolipids. EMBO Reports, 5, 777–782. https://doi.org/10.1038/sj.embor.7400208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hannun, Y. A., & Obeid, L. M. (2008). Principles of bioactive lipid signalling: Lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  28. Ahn, E. H., Chang, C. C., & Schroeder, J. J. (2006). Evaluation of sphinganine and sphingosine as human breast cancer chemotherapeutic and chemopreventive agents. Experimental Biology and Medicine (Maywood, N.J.), 231, 1664–1672. https://doi.org/10.1177/153537020623101012

    Article  CAS  PubMed  Google Scholar 

  29. Sun, W., et al. (2008). Upregulation of the human alkaline ceramidase 1 and acid ceramidase mediates calcium-induced differentiation of epidermal keratinocytes. The Journal of Investigative Dermatology, 128, 389–397. https://doi.org/10.1038/sj.jid.5701025

    Article  CAS  PubMed  Google Scholar 

  30. Janneh, A. H., & Ogretmen, B. (2022). Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). https://doi.org/10.3390/cancers14092183

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, H., Huang, H., & Ding, S. F. (2018). Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biology International, 42, 1492–1502. https://doi.org/10.1002/cbin.10991

    Article  CAS  PubMed  Google Scholar 

  32. Xu, R., et al. (2018). Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death and Differentiation, 25, 841–856. https://doi.org/10.1038/s41418-017-0018-y

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., et al. (2017). Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Scientific Reports, 7, 44573. https://doi.org/10.1038/srep44573

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None declared.

Funding

This study was supported by the National Natural Science Foundation (No. 82104602, 81973819, 81904139 and 81904145), Collaborative Innovation Team Project of First-Rate Universities and Disciplines and High-level University Discipline of Guangzhou University of Chinese Medicine (No. 2021xk47), Natural Science Foundation of Guangdong Province (No. 2019A1515011145), Guangdong Medical Science and Technology Research Fund (Nos. B2021089, A2020186), Guangzhou Science and Technology Project (No. 202102020535), Clinical Research Project of Innovation Hospital in the First Affiliated Hospital of Guangzhou University of Chinese Medicine (No. 2019IIT19), and Innovation Development Project of the First Affiliated Hospital of Guangzhou University of Chinese Medicine (No. 2019QN01).

Author information

Authors and Affiliations

Authors

Contributions

FL, YW, and PL designed this study. XJ, KJ, and JZ performed the experiments and wrote the manuscript. YY and JP coordinated the study and interpreted the results. KJ collected data. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Peiwu Li.

Ethics declarations

Conflict of interest

None.

Ethical Approval and Consent to Participate

All patients signed an informed consent form before the operation. This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Jiang, X., Jiang, K. et al. miR-196a-5p Correlates with Chronic Atrophic Gastritis Progression to Gastric Cancer and Induces Malignant Biological Behaviors of Gastric Cancer Cells by Targeting ACER2. Mol Biotechnol 65, 1306–1317 (2023). https://doi.org/10.1007/s12033-022-00589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00589-8

Keywords

Navigation