Skip to main content
Log in

Sequence-Specific Gene Silencing of acrA in the Multi-drug Efflux System AcrAB Induces Sensitivity in Drug-Resistant Klebsiella pneumoniae

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Multi-drug efflux is one of the resistant determinants in Klebsiella pneumoniae that are encountered in a broad range of clinically relevant antimicrobial agents. An alternative method to strategically induce sensitivity in drug-resistant K. pneumoniae and improve the efficacy of the existing antibiotics is the need of the hour. Hence, an antisense RNA was designed against the acrA gene of the AcrAB-TolC efflux system in a drug-resistant isolate of K. pneumoniae obtained from a blood culture. Minimum inhibitory concentration by E test demonstrated that the antisense RNA could significantly increase the susceptibility of previously resistant K. pneumoniae toward ciprofloxacin (CIP) and co-trimoxazole. Real-time PCR determined the ability of the antisense RNA to inhibit the expression of the acrA-mRNA. The wild-type K. pneumoniae showed increased growth in the presence of CIP, while, under the same condition, the growth of the antisense RNA-treated K. pneumoniae was inhibited up till 12 h. In the presence of co-trimoxazole, delayed growth rate of the antisense RNA-treated K. pneumoniae was seen, in comparison to that of the wild-type K. pneumoniae and also a fourfold reduction was noted in the expression of the efflux gene acrA. Our results underscore the potential of the acrA antisense RNA as an alternative therapeutic against multi-drug-resistant K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caneiras, C., Lito, L., Melo-Cristino, J., & Duarte, A. (2019). Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms, 7, 138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Priyanka, A., Akshatha, K., Deekshit, V.K., Prarthana, J. & Akhila, D.S. (2020). Klebsiella pneumoniae infections and antimicrobial drug resistance. In Model organisms for microbial pathogenesis, biofilm formation and antimicrobial drug discovery (pp. 195–225). Springer.

  3. De Rosa, F. G., Corcione, S., Cavallo, R., Di Perri, G., & Bassetti, M. (2015). Critical issues for Klebsiella pneumoniae KPC-carbapenemase producing K. pneumoniae infections: A critical agenda. Future Microbiology, 10, 283–294.

    Article  PubMed  Google Scholar 

  4. Decre, D., Verdet, C., Emirian, A., Le Gourrierec, T., Petit, J. C., Offenstadt, G., Maury, E., Brisse, S., & Arlet, G. (2011). Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. Journal of Clinical Microbiology, 49, 3012–3014.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Varela, M. F., Andersen, J. L., Ranjana, K. C., Kumar, S., Sanford, L. M., & Hernandez, A. J. (2017). Bacterial resistance mechanisms and inhibitors of multidrug efflux pumps belonging to the major facilitator superfamily of solute transport systems. Frontiers in Anti-Infective Drug Discovery, 5, 109–131.

    Google Scholar 

  6. Miryala, S. K., Anbarasu, A., & Ramaiah, S. (2020). Role of SHV-11, a class a β-lactamase, gene in multidrug resistance among Klebsiella pneumoniae strains and understanding its mechanism by gene network analysis. Microbial Drug Resistance, 1, 900–908.

    Article  Google Scholar 

  7. Kumar, S., Lekshmi, M., Parvathi, A., Ojha, M., Wenzel, N., & Varela, M. F. (2020). Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps. Microorganisms, 8, 266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Turkel, I., Yıldırım, T., Yazgan, B., Bilgin, M., & Başbulut, E. (2018). Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum β-lactamase producing Klebsiella pneumoniae. Journal of Chemotherapy, 17, 354–363.

    Article  Google Scholar 

  9. Ogawa, W., Minato, Y., Dodan, H., Onishi, M., Tsuchiya, T., & Kuroda, T. (2015). Characterization of MATE-type multidrug efflux pumps from Klebsiella pneumoniae MGH78578. PLoS ONE, 25, e0121619.

    Article  Google Scholar 

  10. Yadav, S., Singh, A. K., Agrahari, A. K., Pandey, A. K., Gupta, M. K., Chakravortty, D., Tiwari, K., & Prakash, P. (2021). Galactose-clicked curcumin-mediated reversal of meropenem resistance among Klebsiella pneumoniae by targeting Its carbapenemases and the AcrAB-TolC efflux system. Antibiotics, 10, 388.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sturge, C. R., Felder-Scott, C. F., Pifer, R., Pybus, C., Jain, R., Geller, B. L., & Greenberg, D. (2019). AcrAB–TolC inhibition by peptide-conjugated phosphorodiamidate morpholino oligomers restores antibiotic activity in vitro and in vivo. ACS Infectious Diseases, 5, 1446–1455.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, Q., Jiang, J., Zhu, Z., Xu, T., Sheng, Z. K., Ye, M., Xu, X., & Wang, M. (2019). Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. International Journal of Antimicrobial Agents, 54, 223–227.

    Article  CAS  PubMed  Google Scholar 

  13. Mirzaie, A., & Ranjbar, R. (2021). Antibiotic resistance, virulence-associated genes analysis, and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express, 11, 1–1.

    Article  Google Scholar 

  14. Ashwath, P., Deekshit, V. K., Rohit, A., Dhinakaran, I., Karunasagar, I., Karunasagar, I., & Akhila, D. S. (2022). Biofilm formation and associated gene expression in multidrug-resistant Klebsiella pneumoniae isolated from clinical specimens. Current Microbiology, 79, 73.

    Article  CAS  PubMed  Google Scholar 

  15. Clsi, C. (2016). Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute, 35, 16–38.

    Google Scholar 

  16. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 1, 402–408.

    Article  Google Scholar 

  17. Hasan, M. E., Shahriar, A., Shams, F., Nath, A. K., & Emran, T. B. (2021). Correlation between biofilm formation and antimicrobial susceptibility pattern toward extended spectrum β-lactamase (ESBL)-and non-ESBL-producing uropathogenic bacteria. Journal of Basic and Clinical Physiology and Pharmacology, 1, 32.

    Google Scholar 

  18. Shankar, C., Jacob, J. J., Sugumar, S. G., Natarajan, L., Rodrigues, C., Mathur, P., Mukherjee, D. N.. Sharma, A., Chitnis, D. S., Bharagava, A., Manesh, A., Gunasekaran, K., & Veeraraghavan, B. (2021). Distinctive mobile genetic elements observed in the clonal expansion of carbapenem-resistant Klebsiella pneumoniae in India. Microbial Drug Resistance., 27(8), 1096–1104.

    Article  CAS  PubMed  Google Scholar 

  19. Indrajith, S., Mukhopadhyay, A. K., Chowdhury, G., Al Farraj, D. A., Alkufeidy, R. M., Natesan, S., Meghanathan, V., Gopal, S., & Muthupandian, S. (2021). Molecular insights of carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. Journal of Infection and Public Health, 14, 131–138.

    Article  PubMed  Google Scholar 

  20. Devi, L. S., Broor, S., Rautela, R. S., Grover, S. S., Chakravarti, A., & Chattopadhya, D. (2020). Increasing prevalence of Escherichia coli and Klebsiella pneumoniae producing CTX-M-type extended-spectrum beta-lactamase, carbapenemase, and NDM-1 in patients from a rural community with community acquired infections: A 3-year study. International Journal of Applied and Basic Medical Research, 10, 156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maurya, N., Jangra, M., Tambat, R., & Nandanwar, H. (2019). Alliance of efflux pumps with β-Lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microbial Drug Resistance, 25, 1155–1163.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lv, L., Wan, M., Wang, C., Gao, X., Yang, Q., Partridge, S. R., Wang, Y., Zong, Z., Doi, Y., Shen, J., Jia, P., Song, Q., Zhang, Q., Yang, J., Huang, X., Wang, M., & Liu, J.-L. (2020). Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. MBio, 11, e02930-e3019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liang, X. H., Nichols, J. G., Sun, H., & Crooke, S. T. (2018). Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Research, 46, 293–313.

    Article  CAS  PubMed  Google Scholar 

  24. Braga, P. C., Sasso, M. D., & Sala, M. T. (2000). Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. Journal of Antimicrobial Chemotherapy, 45, 15–25.

    Article  CAS  PubMed  Google Scholar 

  25. Lorian, V., & Gemmel, C. (1991). Effect of low antibiotic concentrations on bacteria: Effects on ultrastructure, virulence, and susceptibility to immunodefenses. In V. Lorian (Ed.), Antibiotics in laboratory medicine (3rd ed., pp. 493–555). Williams & Wilkins.

    Google Scholar 

  26. Braga, P. C. (1994). Effects of subinhibitory concentrations of seven macrolides and four fluoroquinolones on adhesion of Staphylo-coccus aureus to human mucosal cells. Chemotherapy, 40, 304–310.

    Article  CAS  PubMed  Google Scholar 

  27. Chopra, I., & Linton, A. (1986). The antibacterial effects of low concentrations of antibiotics. Advances in Microbial Physiology, 28, 212–259.

    Google Scholar 

  28. Baron, S. A., & Rolain, J. M. (2018). Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 73, 1862–1871.

    Article  CAS  PubMed  Google Scholar 

  29. Khan, S., Khan, S. N., Akhtar, F., Misba, L., Meena, R., & Khan, A. U. (2020). Inhibition of multi-drug resistant Klebsiella pneumoniae: Nanoparticles induced photoinactivation in presence of efflux pump inhibitor. European Journal of Pharmaceutics and Biopharmaceutics, 157, 165–174.

    Article  CAS  PubMed  Google Scholar 

  30. Schillaci, D., Spano, V., Parrino, B., Carbone, A., Montalbano, A., Barraja, P., Diana, P., Cirrincione, G., & Cascioferro, S. (2017). Pharmaceutical approaches to target antibiotic resistance mechanisms. Journal of Medicinal Chemistry, 60, 8268–8297.

    Article  CAS  PubMed  Google Scholar 

  31. Hegarty, J. P., & Stewart, D. B. (2018). Advances in therapeutic bacterial antisense biotechnology. Applied Microbiology and Biotechnology, 102, 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  32. Popova, K. B., Valsamatzi-Panagiotou, A., & Penchovsky, R. (2021). New drug discovery strategies for targeting drug-resistant bacteria. Environmental Chemistry Letters, 13, 1.

    Google Scholar 

  33. Crooke, S. T., Baker, B. F., Crooke, R. M., & Liang, X. H. (2021). Antisense technology: An overview and prospectus. Nature Reviews Drug Discovery, 20, 427–453.

    Article  CAS  PubMed  Google Scholar 

  34. Fooladi, A. A., Aghelimansour, A., & Nourani, M. R. (2013). Evaluation of the pathogenesis of Pseudomonas aeruginosa’s flagellum before and after flagellar gene knockdown by small interfering RNAs (siRNA). Jundishapur Journal of Microbiology, 6, 273–278.

    Google Scholar 

  35. Patil, S. D., Sharma, R., Srivastava, S., Navani, N. K., & Pathania, R. (2013). Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS ONE, 8, e57370.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wu, S., Liu, Y., Zhang, H., & Lei, L. (2019). Nano-graphene oxide improved the antibacterial property of antisense yycG RNA on Staphylococcus aureus. Journal of Orthopaedic Surgery and Research, 14, 1–8.

    Article  Google Scholar 

  37. Mohanty, P. S., Sharma, S., Naaz, F., Kumar, D., Raikwar, A., & Patil, S. A. (2020). Inhibition of Mycobacterium tuberculosis tRNA-ligases using siRNA-based gene silencing method: A computational approach. Journal of Computational Biology, 27, 91–99.

    Article  CAS  PubMed  Google Scholar 

  38. Yanagihara, K., Tashiro, M., Fukuda, Y., Ohno, H., Higashiyama, Y., Miyazaki, Y., Hirakata, Y., Tomono, K., Mizuta, Y., Tsukamoto, K., & Kohno, S. (2006). Effects of short interfering RNA against methicillin-resistant Staphylococcus aureus coagulase in vitro and in vivo. Journal of Antimicrobial Chemotherapy, 1, 122–126.

    Article  Google Scholar 

  39. Oh, E., Zhang, Q., & Jeon, B. (2014). Target optimization for peptide nucleic acid (PNA)-mediated antisense inhibition of the CmeABC multidrug efflux pump in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 69, 375–380.

    Article  CAS  PubMed  Google Scholar 

  40. Gong, F. Y., Zhang, D. Y., Zhang, J. G., Wang, L. L., Zhan, W. L., Qi, J. Y., & Song, J.-X. (2014). siRNA-mediated gene silencing of MexB from the MexA-MexB-OprM efflux pump in Pseudomonas aeruginosa. BMB Reports, 47, 203.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Ayhan, D. H., Tamer, Y. T., Akbar, M., Bailey, S. M., Wong, M., Daly, S. M., Greenberg, D. E., & Toprak, E. (2016). Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. PLoS Biology, 14, e1002552.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hillman, T. (2020). Antisense inhibition of accA suppressed luxS expression that is essential for quorum sense signaling, biofilm formation, and virulence. bioRxiv. https://doi.org/10.1101/747980

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author gratefully acknowledges Nitte (Deemed to be University) for the financial support received through research Grant No. NUFR1/2018/10/17, toward this study.

Author information

Authors and Affiliations

Authors

Contributions

PA contributed to formal analysis and writing of the original draft, DVK contributed to formal analysis and investigation, AR provided isolate source and performed draft reviewing and editing, PR contributed to formal analysis and investigation, VA contributed to formal analysis, NB contributed to formal analysis, IK contributed to final reviewing and editing of the manuscript, ADS contributed to supervision and funding acquisition.

Corresponding author

Correspondence to Akhila Dharnappa Sannejal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical Approval

This study was approved by the Institutional Ethics Committee of the Madras Medical Mission, Chennai (Reg. No.: ECR/140/Inst/TN/2013/RR-20).

Consent to Participate

The informed consent from the patient whose isolate was included in this study was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwath, P., Deekshit, V.K., Rohit, A. et al. Sequence-Specific Gene Silencing of acrA in the Multi-drug Efflux System AcrAB Induces Sensitivity in Drug-Resistant Klebsiella pneumoniae. Mol Biotechnol 65, 953–960 (2023). https://doi.org/10.1007/s12033-022-00585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00585-y

Keywords

Navigation