Skip to main content

Advertisement

Log in

Fabrication of a Patterned Scaffold Using Soft Lithography Technique to be Used in Cell Growth Applications

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, within tissue engineering, cell growth on patterned surfaces have gained significant attention. Growing cells in patterns is important to manufacture polymeric tissues that can be used within the medical field. For this reason, the main focus of this study was to prepare patterned scaffolds using Titanium (Ti) and polyvinyl chloride (PVC) covered on microscope lamellas and examine their liability for cell growth. A polydimethylsiloxane stamp was initially prepared which was then used to transfer a predefined pattern onto PVC- and Ti-covered surfaces. Cell growth experiments were performed on the prepared materials by seeding L929 mouse fibroblasts. The growth of cells seeded on the surface of the scaffolds were spectroscopically followed using Neutral Red uptake assay. The results showed cell proliferation on both patterned surfaces, however, it was higher on Ti-covered samples. In addition, three different alkanethiols were tested for cell adhesion on patterned surfaces. A higher number of cell proliferation was observed with undecanethiol, which has a shorter alkane group among them. The morphological properties of the samples before and after cell-seeding were analyzed via scanning electron microscope and optical microscopy. Significant amount of cell proliferation was observed on all of the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarker, B., Singh, R., Silva, R., Roether, J. A., Kaschta, J., Detsch, R., Schubert, D. W., Cicha, I., & Boccaccini, A. R. (2014). Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS ONE, 9, e107952.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruiz-Alonso, S., Lafuente-Merchan, M., Ciriza, J., Saenz-del-Burgo, L., & Pedraz, J. L. (2021). Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. Journal of Controlled Release, 333, 448–486.

    Article  CAS  PubMed  Google Scholar 

  3. Thai, V. L., Griffin, K. H., Thorpe, S. W., Randall, R. L., & Leach, J. K. (2021). Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone. Journal of Biomechanics, 115, 110189.

    Article  PubMed  Google Scholar 

  4. Aroguz, A. Z., Engin, H. H., & Baysal, B. M. (2007). The assessment of miscibility and morphology of poly(ε-caprolactone) and poly(para-chlorostyrene) blends. European Polymer Journal, 43, 403–409.

    Article  CAS  Google Scholar 

  5. Toh, H. W., Toong, D. W. Y., Ng, J. C. K., Ow, V., Lu, S., Tan, L. P., Wong, P. E. H., Venkatraman, S., Huang, Y., & Ang, H. Y. (2021). Polymer blends and polymer composites for cardiovascular implants. European Polymer Journal, 146, 110249.

    Article  CAS  Google Scholar 

  6. Baysal, K., Aroguz, A. Z., Adiguzel, Z., & Baysal, B. (2013). Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. International Journal of Biological Macromolecules, 59, 342–348.

    Article  CAS  PubMed  Google Scholar 

  7. Aroguz, A. Z., Baysal, K., Adiguzel, Z., & Baysal, B. M. (2014). Alginate/polyoxyethylene and alginate/gelatin hydrogels: Preparation, characterization, and application in tissue engineering. Applied Biochemistry and Biotechnology, 173, 433–448.

    Article  CAS  PubMed  Google Scholar 

  8. Christy, P. N., Basha, S. K., Kumari, V. S., Bashir, A. K. H., Maaza, M., Kaviyarasu, K., Arasu, M. V., Al-Dhabi, N. A., & Ignacimuthu, S. (2020). Biopolymeric nanocomposite scaffolds for bone tissue engineering applications—A review. Journal of Drug Delivery Science and Technology, 55, 101452.

    Article  CAS  Google Scholar 

  9. Chandika, P., Heo, S.-Y., Kim, T.-H., Oh, G.-W., Kim, G.-H., Kim, M.-S., & Jung, W.-K. (2020). Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. International Journal of Biological Macromolecules, 164, 2329–2357.

    Article  CAS  PubMed  Google Scholar 

  10. Abdollahiyan, P., Oroojalian, F., & Mokhtarzadeh, A. (2021). The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release, 332, 460–492.

    Article  CAS  PubMed  Google Scholar 

  11. Li, B., Agarwal, V., Ho, D., Vede, J. P., & Iyer, K. S. (2018). Systematic assessment of surface functionality on nanoscale patterns for topographic contact guidance of cells. New Journal of Chemistry, 42, 7237.

    Article  CAS  Google Scholar 

  12. Tanaka, N., Ota, H., Fukumori, K., Miyake, J., Yamato, M., & Okano, T. (2014). Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing. Biomaterials, 35, 9802–9810.

    Article  CAS  PubMed  Google Scholar 

  13. Adiguzel, Z., Sagnic, S. A., & Aroguz, A. Z. (2017). Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth. Materials Science and Engineering C, 78, 942–948.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, Y. B., Kim, S., Kim, E. M., Byun, H., Chang, H., Park, J., Choi, Y. S., & Shin, H. (2017). Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues. Acta Biomaterialia, 61, 75–87.

    Article  PubMed  Google Scholar 

  15. Kumar, A., & Whitesides, G. M. (1993). Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘“ink”’ followed by chemical etching. Applied Physics Letters, 63, 2002–2004.

    Article  CAS  Google Scholar 

  16. Kumar, A., Biebuyck, H. A., & Whitesides, G. M. (1994). Patterning self-assembled monolayers: Applications in materials science. Langmuir, 10, 1498–1511.

    Article  CAS  Google Scholar 

  17. Khadpekar, A. J., Khan, M., Sose, A., & Majumder, A. (2019). Low cost and lithography-free stamp fabrication for microcontact printing. Science and Reports, 9, 1024.

    Article  Google Scholar 

  18. Moffat, T. P., & Yang, H. (1995). Patterned metal electrodeposition using an alkanethiolate mask. Journal of the Electrochemical Society, 142, L220–L222.

    Article  CAS  Google Scholar 

  19. Salvietti, E., Giurlani, W., Foresti, M. L., Passaponti, M., Fabbri, L., Marcantelli, P., Caporali, S., Martinuzzi, S., Calisi, N., Pedio, M., & Innocenti, M. (2018). On the contrasting effect exerted by a thin layer of CdS against the passivation of silver electrodes coated with thiols. Surfaces, 1, 29–42.

    Article  Google Scholar 

  20. Asakura, S., Hozumi, A., Yamaguchi, T., & Fuwa, A. (2006). A simple lithographic method employing 172 nm vacuum ultraviolet light to prepare positive- and negative-tone poly(methyl methacrylate) patterns. Thin Solid Films, 1–2, 237–240.

    Article  Google Scholar 

  21. Delgado, A. V., López-Viota, J., Ramos, M. M., & Arias, J. L. (2014). Particle geometry, charge, and wettability: The fate of nanoparticle-based drug vehicles. In H. Ohshima & K. Makino (Eds.), Colloid and ınterface science in pharmaceutical research and development (pp. 443–467). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  22. Peerani, R., Bauwens, C., Kumacheva, E., & Zandstra, P. W. (2009). Patterning mouse and human embryonic stem cells using micro-contact printing. Methods in Molecular Biology, 482, 21–33.

    Article  CAS  PubMed  Google Scholar 

  23. Abdelgawad, M. M., Watson, W. L., Young, E. W. K., Mudrik, J. M., Ungrin, M. D., & Wheeler, A. R. (2008). Soft lithography: Masters on demand. Lab on a Chip, 8, 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  24. Pedraza, E., Brady, A. C., Fraker, C. A., & Stabler, C. L. (2013). Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 24, 1041–1056.

    Article  CAS  PubMed  Google Scholar 

  25. Faustino, V., Catarino, S. O., Lima, R., & Minas, G. (2016). Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of Biomechanics, 49, 2280–2292.

    Article  PubMed  Google Scholar 

  26. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., & Ingber, D. E. (2001). Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 3, 335–373.

    Article  CAS  PubMed  Google Scholar 

  27. Jin, M., Feng, X., Xi, J., Zhai, J., Cho, K., Feng, L., & Jiang, L. (2005). Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromolecular Rapid Communications, 26, 1805–1809.

    Article  CAS  Google Scholar 

  28. Ochsner, M., Dusseiller, M. R., Grandin, H. M., Luna-Morris, S., Textor, M., Vogel, V., & Smith, M. L. (2007). Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab on a Chip, 7, 1074–1077.

    Article  CAS  PubMed  Google Scholar 

  29. Ostuni, E., Yan, L., & Whitesides, G. M. (1999). The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids and Surfaces B: Biointerfaces, 15, 3–30.

    Article  CAS  Google Scholar 

  30. Oakley, C., & Brunette, D. (1993). The sequence of alignment of microtubules focal contacts and actin filaments in fibroblasts spreading on smooth and grooved substrata. Journal of Cell Science, 106(Pt 1), 343–354.

    Article  PubMed  Google Scholar 

  31. Kumar, A., & Jacob, A. (2022). Techniques in scaffold fabrication process for tissue engineering applications: A review. Journal of Applied Biology & Biotechnology, 10(03), 163–176.

    Article  Google Scholar 

  32. Qu, Y., Lu, K., Zheng, Y., Huang, C., Wang, G., Zhang, Y., & Qian, Yu. (2022). Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioactive Materials, 8, 449–477.

    Article  CAS  PubMed  Google Scholar 

  33. Clarson, S. J., Clarson, S. J., & Semlyen, J. A. (1993). Siloxane polymers. Prentice Hall.

    Google Scholar 

  34. Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Annual Review of Materials Science, 28, 153–184.

    Article  CAS  Google Scholar 

  35. Qi, D., Xia, Y., & Whitesides, G. M. (2010). Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5, 491–502.

    Article  Google Scholar 

  36. Mrksich, M., Dike, L. E., Tien, J., Ingber, D. E., & Whitesides, G. M. (1997). Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Experimental Cell Research, 235, 305–313.

    Article  CAS  PubMed  Google Scholar 

  37. Advincula, M., Fan, X., Lemons, J., & Advincula, R. (2005). Surface modification of surface sol-gel derived titanium oxide films by Self-Assembled monolayers (SAMs) and non-specific protein adsorption studies. Colloids and Surfaces B: Biointerfaces, 42, 29–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of the Istanbul University-Cerrahpasa. Project Number: BAP-42735. Financial support of Istanbul University—Cerrahpasa is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis. The first draft of the manuscript was written by AZA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ayse Z. Aroguz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sariogullari, H., Aroguz, A.Z. & Adiguzel, Z. Fabrication of a Patterned Scaffold Using Soft Lithography Technique to be Used in Cell Growth Applications. Mol Biotechnol 65, 786–793 (2023). https://doi.org/10.1007/s12033-022-00581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00581-2

Keywords

Navigation