Skip to main content

Advertisement

Log in

In Vitro and In Vivo Studies of a Heminecrolysin Toxin–VEGF Fusion Protein as a Novel Therapeutic for Solid Tumor Targeting

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Angiogenesis, the formation of new vessels, is a critical step in the malignancy progression of solid tumors. Many investigations have demonstrated the usefulness of immunotoxins to halt angiogenesis in solid tumors. Pharmaceutically, Vascular Endothelial Growth Factor (VEGF) can deliver coupled toxins to the tumor vessels through VEGF Receptors. In the current study, we designed, expressed, and assessed the in vitro and in vivo toxicities of a novel immunotoxin consisting of mouse VEGF and heminecrolysin toxin (mVEGF-HNc). The fusion protein was expressed in E. coli and purified via Ni+2 affinity chromatography. The biological activity of immunotoxin was evaluated on NIH/3T3 cells and TC1-tumorized mouse model. The mVEGF-NHc showed significant cytotoxicity on the cells as VEGFR-expressing cells. Moreover, the size of the tumor in the mVEGF-HNc-treated group started to reduce after six injections, while it continued to grow in the PBS-received mice. Efficacious targeting of solid tumor cells via mVEGF-HNc suggests its prospective therapeutic potential for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors state that all data necessary for confirming the conclusions presented in the article are represented fully within the article.

References

  1. Nagai, H., & Kim, Y. H. (2017). Cancer prevention from the perspective of global cancer burden patterns. Journal of Thoracic Disease, 9(3), 448.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fallah, A., Sadeghinia, A., Kahroba, H., Samadi, A., Heidari, H. R., Bradaran, B., et al. (2019). Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomedicine & Pharmacotherapy, 110, 775–785.

    Article  CAS  Google Scholar 

  4. Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: Causes, consequences, challenges, and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770.

    Article  CAS  PubMed  Google Scholar 

  5. Shibuya, M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes & Cancer, 2(12), 1097–1105.

    Article  Google Scholar 

  6. Shweiki, D., Itin, A., Neufeld, G., Gitay-Goren, H., & Keshet, E. (1993). Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. The Journal of Clinical Investigation, 91(5), 2235–2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niu, G., & Chen, X. (2010). Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Current Drug Targets, 11(8), 1000–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aruna, G. (2006). Immunotoxins: A review of their use in cancer treatment. Journal of Stem Cells & Regenerative Medicine, 1(1), 31.

    Article  CAS  Google Scholar 

  9. Backer, M. V., Budker, V. G., & Backer, J. M. (2001). Shiga-like toxin-VEGF fusion proteins are selectively cytotoxic to endothelial cells overexpressing VEGFR-2. Journal of Controlled Release, 74(1–3), 349–355.

    Article  CAS  PubMed  Google Scholar 

  10. Langari, J., Karimipoor, M., Golkar, M., Khanahmad, H., Zeinali, S., Omidinia, S., et al. (2017). In vitro evaluation of Vegf-Pseudomonas exotoxin: A conjugated on tumor cells. Advanced Biomedical Research, 6, 144.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohamedali, K. A., Ran, S., Gomez-Manzano, C., Ramdas, L., Xu, J., Kim, S., et al. (2011). Cytotoxicity of VEGF 121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2. BMC Cancer, 11(1), 1–11.

    Article  Google Scholar 

  12. Hosseininejad-Chafi, M., Alirahimi, E., Ramezani, B., Oghalaie, A., Sotoudeh, N., Ghaderi, H., et al. (2022). In vivo solid tumor targeting with recombinant VEGF-diphtheria immunotoxin. Iranian Journal of Basic Medical Sciences, 25(1), e2783.

    Google Scholar 

  13. Hotz, H. G., Gill, P. S., Masood, R., Hotz, B., Buhr, H. J., Foitzik, T., et al. (2002). Specific targeting of tumor vasculature by diphtheria toxin-vascular endothelial growth factor fusion protein reduces angiogenesis and growth of pancreatic cancer. Journal of Gastrointestinal Surgery, 6(2), 159–166.

    Article  PubMed  Google Scholar 

  14. Chaisakul, J., Hodgson, W. C., Kuruppu, S., & Prasongsook, N. (2016). Effects of animal venoms and toxins on hallmarks of cancer. Journal of Cancer, 7(11), 1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding, J., Chua, P.-J., Bay, B.-H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine, 239(4), 387–393.

    Article  PubMed  Google Scholar 

  16. Ahmadi, S., Knerr, J. M., Argemi, L., Bordon, K. C. F., Pucca, M. B., Cerni, F. A., et al. (2020). Scorpion venom: Detriments and benefits. Biomedicines, 8(5), 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao, J.-H., Cui, Y., Zhao, M.-Y., Wu, C.-F., Liu, Y.-F., & Zhang, J.-H. (2014). Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides, 53, 89–96.

    Article  CAS  PubMed  Google Scholar 

  18. Dardevet, L., Rani, D., El Aziz, T. A., Bazin, I., Sabatier, J.-M., Fadl, M., et al. (2015). Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins, 7(4), 1079–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, B., Jaffe, D. B., & Brenner, R. (2014). Current understanding of iberiotoxin-resistant BK channels in the nervous system. Frontiers in physiology, 5, 382.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bartok, A., Toth, A., Somodi, S., Szanto, T. G., Hajdu, P., Panyi, G., & Varga, Z. (2014). Margatoxin is a non-selective inhibitor of human Kv1. 3 K+ channels. Toxicon, 87, 6–16.

    Article  CAS  PubMed  Google Scholar 

  21. Miller, C. (1995). The charybdotoxin family of K+ channel-blocking peptides. Neuron, 15(1), 5–10.

    Article  CAS  PubMed  Google Scholar 

  22. Dehghani, R., Kamiabi, F., & Mohammadi, M. (2018). Scorpionism by Hemiscorpius spp. in Iran: A review. Journal of Venomous Animals and Toxins Including Tropical Diseases, 24, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Borchani, L., Sassi, A., Shahbazzadeh, D., Strub, J.-M., Tounsi-Guetteti, H., Boubaker, M. S., et al. (2011). Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. Toxicon, 58(1), 130–139.

    Article  CAS  PubMed  Google Scholar 

  24. Shahbazzadeh, D., Yardehnavi, N., Kazemi-Lomedasht, F., Bagheri, K. P., & Behdani, M. (2017). Anticancer activity of H. lepturus venom and its hemolytic fraction (heminecrolysin). HBB, 1, 46–53.

    Google Scholar 

  25. Ramakrishnan, S., Fryxell, D., Mohanraj, D., Olson, M., & Li, B. (1992). Cytotoxic conjugates containing translational inhibitory proteins. Annual Review of Pharmacology and Toxicology, 32(1), 579–621.

    Article  CAS  PubMed  Google Scholar 

  26. Jain, R. K. (1998). Delivery of molecular and cellular medicine to solid tumors. Journal of Controlled Release, 53(1–3), 49–67.

    Article  CAS  PubMed  Google Scholar 

  27. Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians, 69(5), 363–385.

    PubMed  Google Scholar 

  28. Knödler, M., & Buyel, J. F. (2021). Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnology Advances, 47, 107683.

    Article  PubMed  Google Scholar 

  29. Yamaizumi, M., Mekada, E., Uchida, T., & Okada, Y. (1978). One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15(1), 245–250.

    Article  CAS  PubMed  Google Scholar 

  30. Manoukian, G., & Hagemeister, F. (2009). Denileukin diftitox: A novel immunotoxin. Expert Opinion on Biological Therapy, 9(11), 1445–1451.

    Article  CAS  PubMed  Google Scholar 

  31. Dhillon, S. (2018). Moxetumomab pasudotox: First global approval. Drugs, 78(16), 1763–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cangini, D., Silimbani, P., Cafaro, A., Giannini, M. B., Masini, C., Simonetti, G., et al. (2020). Tagraxofusp and anti-CD123 in blastic plasmacytoid dendritic cell neoplasm: A new hope. Minerva Medica. https://doi.org/10.23736/S0026-4806.20.07018-4

    Article  PubMed  Google Scholar 

  33. Makrilia, N., Lappa, T., Xyla, V., Nikolaidis, I., & Syrigos, K. (2009). The role of angiogenesis in solid tumours: An overview. European Journal of Internal Medicine, 20(7), 663–671.

    Article  CAS  PubMed  Google Scholar 

  34. Goel, H. L., & Mercurio, A. M. (2013). VEGF targets the tumour cell. Nature Reviews Cancer, 13(12), 871–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veenendaal, L. M., Jin, H., Ran, S., Cheung, L., Navone, N., Marks, J. W., et al. (2002). In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proceedings of the National Academy of Sciences, 99(12), 7866–7871.

    Article  CAS  Google Scholar 

  36. Khodabakhsh, F., Norouzian, D., Vaziri, B., Ahangari, C. R., Sardari, S., Mahboudi, F., et al. (2018). Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1402–1414.

    Article  CAS  PubMed  Google Scholar 

  37. Aghaabdollahian, S., Ahangari, C. R., Norouzian, D., Davami, F., Asadi Karam, M. R., Torkashvand, F., et al. (2019). Enhancing bioactivity, physicochemical, and pharmacokinetic properties of a nano-sized, anti-VEGFR2 Adnectin, through PASylation technology. Scientific Reports, 9(1), 1–14.

    Article  CAS  Google Scholar 

  38. Soleimani Moez, A., Sajedi, R. H., Pooshang Bagheri, K., Sabatier, J.-M., & Shahbazzadeh, D. (2020). Novel mutant phospholipase D from Hemiscorpius lepturus acts as A highly immunogen in BALB/c mice against the lethality of scorpion venom. Molecules, 25(7), 1673.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the research, contributed to the writing of the manuscript, and approved its final version.

Corresponding author

Correspondence to Mahdi Behdani.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderiyan, Z., Sotoudeh, N., Shoari, A. et al. In Vitro and In Vivo Studies of a Heminecrolysin Toxin–VEGF Fusion Protein as a Novel Therapeutic for Solid Tumor Targeting. Mol Biotechnol 65, 766–773 (2023). https://doi.org/10.1007/s12033-022-00578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00578-x

Keywords

Navigation