Skip to main content

Advertisement

Log in

MiR-485-5p Suppress the Malignant Characteristics of the Lung Adenocarcinoma via Targeting NADPH Quinone Oxidoreductase-1 to Inhibit the PI3K/Akt

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lung adenocarcinoma (LUAD), a prevalent form of non-small cell lung cancer (NSCLC), has a high incidence and mortality rate. However, its molecular regulatory mechanisms have yet to be fully understood. The purpose of this study was to look into how NADPH quinone oxidoreductase-1 (NQO1) and it miR-485-5p and affected LUAD cells. The levels of miR-485-5p and NQO1 expression in LUAD cells and tissues were determined by means of quantitative reverse transcription polymerase chain reaction. The viability, proliferation, migration, and apoptosis of LUAD cells were assessed using cell counting Kit-8, 5-bromo-2′-deoxyuridine, transwell, and caspase-3 assays, respectively. Western blot experiments were used to examine the relative protein expression of matrix metallopeptidase 2 and matrix metallopeptidase 9, as well as the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in LUAD cells. Luciferase and RNA pull-down experiments were also conducted for the verification of miR-485-5p’s underlying relationship with NQO1. In our study, we found that LUAD cells and tissues had miR-485-5p downregulation and NQO1 upregulation. The experimental outcomes indicated that miR-485-5p overexpression in LUAD cells reduced their malignant behaviors, suppressed PI3K and Akt phosphorylation, and facilitated apoptosis. The results also revealed that NQO1 was a direct miR-485-5p target, and that NQO1 could reverse miR-485-5p’s inhibitory effect on the malignant phenotype of LUAD cells. Furthermore, it was also observed that through targeting NQO1, miR-485-5p could suppress LUAD cell migration and proliferation, further blocking the phosphorylation of PI3K and Akt and inducing apoptosis among LUAD cells. In conclusion, the miR-485-5/NQO1 axis regulates LUAD progression through the PI3K/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study can be found in below websites. One mRNA microarrays (GSE118370) from GEO DataSets (https://www.ncbi.nlm.nih.gov/gds) were used to screen the genes. GEPIA (http://gepia.cancer-pku.cn/), miRDB (http://mirdb.org/), starBase (https://starbase.sysu.edu.cn/) and TargetScan (http://www.targetscan.org/vert_80/) were used to predict the binding sites.

Abbreviations

miRNA:

MicroRNA

NQO1:

NADPH quinone oxidoreductase-1

LUAD:

Lung adenocarcinoma

GEPIA:

Gene Expression Profiling Interactive Analysis

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

MMP2:

Metallopeptidase 2

MMP9:

Matrix metallopeptidase 9

CCK-8:

Cell Counting kit-8

BrdU:

5′-Bromo-2′-deoxyuridine

NSCLC:

Non-small-cell lung carcinoma

3′UTR:

3′Untranslated region

DMEM:

Dulbecco's Modified Eagle's medium

FBS:

Fetal bovine serum

STR :

Short tandem repeat

U6:

Uracil6

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Ac-DEVD-pNA:

Glu-Val-Asp-chromophore p-nitroaniline

RIPA:

Radioimmunoprecipitation assay

SDS-PAGE:

Sulfate-polyacrylamidegel electrophoresis

ECL:

Chemiluminescence

ANOVA:

Analysis of variance

References

  1. Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer: Current treatment and future advances. Translational Lung Cancer Research, 5, 288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hutchinson, B. D., Shroff, G. S., Truong, M. T., & Ko, J. P. (2019). Spectrum of lung adenocarcinoma. Seminars in Ultrasound, CT, and MR, 40, 255–264.

    Article  PubMed  Google Scholar 

  3. Wang, D., Luo, Y., Shen, D., Yang, L., Liu, H. Y., & Che, Y. Q. (2019). Clinical features and treatment of patients with lung adenocarcinoma with bone marrow metastasis. Tumori, 105, 388–393.

    Article  CAS  PubMed  Google Scholar 

  4. Song, Q., Shang, J., Yang, Z., Zhang, L., Zhang, C., Chen, J., & Wu, X. (2019). Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. Journal of Translational Medicine, 17, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Denisenko, T. V., Budkevich, I. N., & Zhivotovsky, B. (2018). Cell death-based treatment of lung adenocarcinoma. Cell Death & Disease, 9, 117.

    Article  Google Scholar 

  6. Reuter, J. A., Spacek, D. V., & Snyder, M. P. (2015). High-throughput sequencing technologies. Molecular Cell, 58, 586–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai, Y. M., Wu, K. L., Chang, Y. Y., Chang, W. A., Huang, Y. C., Jian, S. F., Tsai, P. H., Lin, Y. S., Chong, I. W., Hung, J. Y., & Hsu, Y. L. (2020). Upregulation of Thr/Tyr kinase increases the cancer progression by neurotensin and dihydropyrimidinase-like 3 in lung cancer. International Journal of Molecular Sciences, 21, 1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Aberasturi, A. L., Redrado, M., Villalba, M., Larzabal, L., Pajares, M. J., Garcia, J., Evans, S. R., Garcia-Ros, D., Bodegas, M. E., Lopez, L., Montuenga, L., & Calvo, A. (2016). TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients. Cancer Letters, 370, 165–176.

    Article  PubMed  Google Scholar 

  9. Zheng, Y. W., Li, Z. H., Lei, L., Liu, C. C., Wang, Z., Fei, L. R., Yang, M. Q., Huang, W. J., & Xu, H. T. (2020). FAM83A promotes lung cancer progression by regulating the Wnt and Hippo signaling pathways and indicates poor prognosis. Frontiers in Oncology, 10, 180.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, G., Li, X., Yao, Y., Jiang, Z., Zhou, H., Xie, K., Luo, J., & Shen, Y. (2021). FAM83A and FAM83A‑AS1 both play oncogenic roles in lung adenocarcinoma. Oncology Letters, 21, 297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, L., Lu, C., Huang, Y., Zhou, J., Wang, X., Liu, C., Chen, J., & Le, H. (2018). SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. BMB Reports, 51, 648–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Z., Zhang, Y., Jin, T., Men, J., Lin, Z., Qi, P., Piao, Y., & Yan, G. (2015). NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer, 15, 207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegel, D., Yan, C., & Ross, D. (2012). NAD (P) H: Quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochemical Pharmacology, 83, 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  14. Madajewski, B., Boatman, M. A., Chakrabarti, G., Boothman, D. A., & Bey, E. A. (2016). Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC depleting tumor-NQO1 levels inhibits NSCLC growth. Molecular Cancer Research: MCR, 14, 14–25.

    Article  CAS  PubMed  Google Scholar 

  15. Bey, E. A., Reinicke, K. E., Srougi, M. C., Varnes, M., Anderson, V. E., Pink, J. J., Li, L. S., Patel, M., Cao, L., Moore, Z., Rommel, A., Boatman, M., Lewis, C., Euhus, D. M., Bornmann, W. G., Buchsbaum, D. J., Spitz, D. R., Gao, J., & Boothman, D. A. (2013). Catalase abrogates β-lapachone–induced PARP1 hyperactivation–directed programmed necrosis in NQO1-positive breast cancers catalase confers resistance to β-lapachone cell death. Molecular Cancer Therapeutics, 12, 2110–2120.

    Article  CAS  PubMed  Google Scholar 

  16. Silvers, M. A., Deja, S., Singh, N., Egnatchik, R. A., Sudderth, J., Luo, X., Beg, M. S., Burgess, S. C., DeBerardinis, R. J., Boothman, D. A., & Merritt, M. E. (2017). The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. The Journal of Biological Chemistry, 292, 18203–18216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Motea, E. A., Huang, X., Singh, N., Kilgore, J. A., Williams, N. S., Xie, X. J., Gerber, D. E., Beg, M. S., Bey, E. A., & Boothman, D. A. (2019). NQO1-dependent, tumor-selective radiosensitization of non-small cell lung cancers NQO1-dependent radiosensitization of NSCLCs. Clinical Cancer Research, 25, 2601–2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X., Han, K., Yuan, D. H., & Meng, C. Y. (2017). Overexpression of NAD (P) H: quinone oxidoreductase 1 inhibits hepatocellular carcinoma cell proliferation and induced apoptosis by activating AMPK/PGC-1α pathway. DNA and Cell Biology, 36, 256–263.

    Article  PubMed  Google Scholar 

  19. Bayoumi, A. S., Sayed, A., Broskova, Z., Teoh, J. P., Wilson, J., Su, H., Tang, Y. L., & Kim, I. M. (2016). Crosstalk between long noncoding RNAs and microRNAs in health and disease. International Journal of Molecular Sciences, 17, 356.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141, 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  21. Raitoharju, E., Seppälä, I., Oksala, N., Lyytikäinen, L. P., Raitakari, O., Viikari, J., Ala-Korpela, M., Soininen, P., Kangas, A. J., Waldenberger, M., Klopp, N., Illig, T., Leiviskä, J., Loo, B. M., Hutri-Kähönen, N., Kähönen, M., Laaksonen, R., & Lehtimäki, T. (2014). Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: the cardiovascular risk in Young Finns Study. Molecular and Cellular Endocrinology, 391, 41–49.

    Article  CAS  PubMed  Google Scholar 

  22. Orso, F., Quirico, L., Dettori, D., Coppo, R., Virga, F., Ferreira, L. C., Paoletti, C., Baruffaldi, D., Penna, E., & Taverna, D. (2020). Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Seminars in Cancer Biology, 60, 214–224.

    Article  PubMed  Google Scholar 

  23. Hu, X. X., Xu, X. N., He, B. S., Sun, H. L., Xu, T., Liu, X. X., Chen, X. X., Zeng, K. X., Wang, S. K., & Pan, Y. Q. (2018). microRNA-485-5p functions as a tumor suppressor in colorectal cancer cells by targeting CD147. Journal of Cancer, 9, 2603–2611.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin, X. J., He, C. L., Sun, T., Duan, X. J., Sun, Y., & Xiong, S. J. (2017). hsa-miR-485-5p reverses epithelial to mesenchymal transition and promotes cisplatin-induced cell death by targeting PAK1 in oral tongue squamous cell carcinoma. International Journal of Molecular Medicine, 40, 83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, J., Li, J., Ren, J., & Zhang, D. (2017). MicroRNA-485-5p represses melanoma cell invasion and proliferation by suppressing Frizzled7. Biomedicine & Pharmacotherapy, 90, 303–310.

    Article  CAS  Google Scholar 

  26. Mou, X., & Liu, S. (2016). MiR-485 inhibits metastasis and EMT of lung adenocarcinoma by targeting Flot2. Biochemical and Biophysical Research Communications, 477, 521–526.

    Article  CAS  PubMed  Google Scholar 

  27. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods (San Diego Calif.), 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, S., Li, P., Jiang, G., Guan, J., Chen, D., & Zhang, X. (2020). Long non-coding RNA LOC285194 inhibits proliferation and migration but promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA and TGF-β1/S100A4 signal. Bioengineered, 11, 718–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, J. T., Chi, B. J., Sun, Y., Chi, N. N., Zhang, X. M., Sun, J. B., Chen, Y., & Xia, Y. (2020). LINC00174 is an oncogenic lncRNA of hepatocellular carcinoma and regulates miR‐320/S100A10 axis. Cell Biochemistry and Function, 38, 859–869.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Z. F., Liang, Z. Q., Li, L., Zhou, Y. B., Wang, Z. B., Gu, W. F., Tu, L. Y., & Zhao, J. (2016). MiR-335 functions as a tumor suppressor and regulates survivin expression in osteosarcoma. European Review for Medical and Pharmacological Sciences, 20, 1251–1257.

    PubMed  Google Scholar 

  31. Zhang, N., & Liu, J. F. (2020). MicroRNA (MiR)-301a-3p regulates the proliferation of esophageal squamous cells via targeting PTEN. Bioengineered, 11, 972–983.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Awan, H. M., Shah, A., Rashid, F., Wei, S., Chen, L., & Shan, G. (2018). Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression. RNA Biology, 15, 55–61.

    Article  PubMed  Google Scholar 

  33. Chen, L., Zhu, Q., Lu, L., & Liu, Y. (2020). MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1. Bioengineered, 11, 91–102.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huang, Y., & Feng, G. (2021). MiR‐423‐5p aggravates lung adenocarcinoma via targeting CADM1. Thoracic Cancer, 12, 210–217.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, L. Y., Zhang, F. W., Tong, J., & Liu, F. (2020). MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to inhibit Wnt pathway. Molecular Genetics & Genomic Medicine, 8, e1043.

    Article  Google Scholar 

  36. Jiang, P., Xu, C., Chen, L., Chen, A., Wu, X., Zhou, M., Haq, I. U., Mariyam, Z., & Feng, Q. (2018). Epigallocatechin‐3‐gallate inhibited cancer stem cell-like properties by targeting hsa‐mir‐485‐5p/RXRα in lung cancer. Journal of Cellular Biochemistry, 119, 8623–8635.

    Article  CAS  PubMed  Google Scholar 

  37. Huang, R. S., Zheng, Y. L., Li, C., Ding, C., Xu, C., & Zhao, J. (2018). MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sciences, 199, 104–111.

    Article  CAS  PubMed  Google Scholar 

  38. Li, W., Zheng, Y., Mao, B., Wang, F., Zhong, Y., & Cheng, D. (2020). SNHG17 upregulates WLS expression to accelerate lung adenocarcinoma progression by sponging miR-485–5p. Biochemical and Biophysical Research Communications, 533, 1435–1441.

    Article  CAS  PubMed  Google Scholar 

  39. Gao, F., Wu, H., Wang, R., Guo, Y., Zhang, Z., Wang, T., Zhang, G., Liu, C., & Liu, J. (2019). MicroRNA-485-5p suppresses the proliferation, migration and invasion of small cell lung cancer cells by targeting flotillin-2. Bioengineered, 10, 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plotnikova, O., Baranova, A., & Skoblov, M. (2019). Comprehensive analysis of human microRNA–mRNA interactome. Frontiers in Genetics, 10, 933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiyohara, C., Yoshimasu, K., Takayama, K., & Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: a HuGE review. Genetics in Medicine, 7, 463–478.

    Article  CAS  PubMed  Google Scholar 

  42. Park, S. Y., Lee, S. J., Han, J. H., & Koh, Y. W. (2019). Association between 18F-FDG uptake in PET/CT, Nrf2, and NQO1 expression and their prognostic significance in non-small cell lung cancer. Neoplasma, 66, 619–626.

    Article  CAS  PubMed  Google Scholar 

  43. Liang, J., Li, H., Han, J., Jiang, J., Wang, J., Li, Y., Feng, Z., Zhao, R., Sun, Z., Lv, B., & Tian, H. (2020). Mex3a interacts with LAMA2 to promote lung adenocarcinoma metastasis via PI3K/AKT pathway. Cell Death & Disease, 11, 614.

    Article  CAS  Google Scholar 

  44. Sun, B., Hu, N., Cong, D., Chen, K., & Li, J. (2021). MicroRNA-25-3p promotes cisplatin resistance in non-small-cell lung carcinoma (NSCLC) through adjusting PTEN/PI3K/AKT route. Bioengineered, 12, 3219–3228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Q., Wang, Z., Zhou, X., Tang, M., Tan, W., Sun, T., Wang, Y., & Deng, Y. (2020). miR-485-5p/HSP90 axis blocks Akt1 phosphorylation to suppress osteosarcoma cell proliferation and migration via PI3K/AKT pathway. Journal of Physiology and Biochemistry, 76, 279–290.

    Article  CAS  PubMed  Google Scholar 

  46. Dimri, M., Humphries, A., Laknaur, A., Elattar, S., Lee, T. J., Sharma, A., Kolhe, R., & Satyanarayana, A. (2020). Nqo1 ablation inhibits activation of the PI3K/Akt and MAPK/ERK pathways and blocks metabolic adaptation in hepatocellular carcinoma. Hepatology (Baltimore, MD), 71, 549–568.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

Funding information is not available.

Author information

Authors and Affiliations

Authors

Contributions

YPC and LW executed the experiments and analyzed the data. YPC devised and designed the study. MB acquired the data. YPC, LW, and MB analyzed and interpreted the data. All authors have read and approved this manuscript.

Corresponding author

Correspondence to Min Bao.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Ethical Approval

The Ethics Committee of Wuhan No.1 Hospital (Wuhan, China) granted approval to this study. The processing of clinical tissue samples had been in strict compliance with the ethical standards of the Declaration of Helsinki. All patients signed a written informed consent.

Patient Consent for Publication

All patients signed a written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, L. & Bao, M. MiR-485-5p Suppress the Malignant Characteristics of the Lung Adenocarcinoma via Targeting NADPH Quinone Oxidoreductase-1 to Inhibit the PI3K/Akt. Mol Biotechnol 65, 794–806 (2023). https://doi.org/10.1007/s12033-022-00577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00577-y

Keywords

Navigation