Skip to main content
Log in

Identification and Functional Analysis of the Promoter of a Leucoanthocyanidin Reductase Gene from Gossypium hirsutum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Leucoanthocyanidin reductase (LAR) is the critical enzyme in the synthesis pathway of proanthocyanidins, which are the primary pigments in brown cotton fibers. Our previous study has revealed significant differences in the expression levels of GhLAR1 between white and brown cotton fibers at 10 DPA. In this work, the expression pattern of the GhLAR1 gene was further studied, and the promoter of GhLAR1 (1780 bp) was isolated and characterized. Bioinformatic analysis indicated that GhLAR1 promoter contained many known light response elements and several defenses related to transcriptional factor-binding boxes, which may partially explain the response of the GhLAR1 to temperature, NaCl, and PEG treatments. Furthermore, GhLAR1 was preferentially and strongly expressed in fibers and flowers of cotton, and the expression levels in all tested tissues (especially fibers) of brown cotton were significantly higher than those in white cotton. Consistent with the expression analysis, the GhLAR1 promoter mainly drove GUS expression in epidermal trichomes and floral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun, J., Sun, Y., & Zhu, Q. H. (2021). Breeding next-generation naturally colored cotton. Trends in Plant Science, 26(6), 539–542.

    Article  CAS  PubMed  Google Scholar 

  2. Hua, S., Wang, X., Yuan, S., Shao, M., Zhao, X., Zhu, S., & Jiang, L. (2007). Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Frontiers in Plant Science, 47(4), 1540–1546.

    CAS  Google Scholar 

  3. Liu, H. F., Luo, C., Song, W., Shen, H., Li, G., He, Z. G., Chen, W. G., Cao, Y. Y., Huang, F., & Tang, S. W. (2018). Hong P flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ, 6, e4537.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, Z., Zhang, X., He, S., Rehman, A., Jia, Y., Li, H., Pan, Z., Geng, X., Gao, Q., Wang, L., & Peng, Z. (2021). Transcriptome co-expression network and metabolome analysis identifies key genes and regulators of proanthocyanidins biosynthesis in brown cotton. Frontiers in plant science., 12, 822198.

    Article  PubMed  Google Scholar 

  5. Sun, S., Xiong, X. P., Zhu, Q., Li, Y. J., & Sun, J. (2019). Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20194838

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feng, H., Li, Y., Wang, S., Zhang, L., Liu, Y., Xue, F., Sun, Y., Wang, Y., & Sun, J. (2014). Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). Journal of Experimental Botany, 65(20), 5759–69.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao, Y. H., Yan, Q., Ding, H., Luo, M., Hou, L., Zhang, M., Yao, D., Liu, H. S., Li, X., Zhao, J., & Pei, Y. (2014). Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS ONE, 9(1), e86344.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feng, H., Yang, Y., Sun, S., Li, Y., Zhang, L., Tian, J., Zhu, Q., Feng, Z., & Zhu, H. (2017). Sun J Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. Journal of Experimental Botany, 68(16), 4559–4569.

    CAS  PubMed  Google Scholar 

  9. Feng, H., Tian, X., Liu, Y., Li, Y., Zhang, X., Jones, B. J., Sun, Y., & Sun, J. (2013). Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS ONE, 8(3), e58820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, J., Shen, L., Yuan, J., Zheng, H., Su, Q., Yang, W., Zhang, L., Nnaemeka, V. E., Sun, J., Ke, L., & Sun, Y. (2019). Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC Plant Biology, 19(1), 455.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, H., Tian, J., Yao, Y. Y., Zhang, J., Song, T. T., & Li, K. T. (2019). Yao YC Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry: PPB., 139, 141–151.

    Article  CAS  PubMed  Google Scholar 

  12. Maugé, C., Granier, T., d’Estaintot, B. L., Gargouri, M., Manigand, C., Schmitter, J. M., Chaudière, J., & Gallois, B. (2010). Crystal structure and catalytic mechanism of leucoanthocyanidin reductase from Vitis vinifera. Journal of Molecular Biology, 397(4), 1079–1091.

    Article  PubMed  Google Scholar 

  13. Güngör, E., Brouwer, P., Dijkhuizen, L. W., Shaffar, D. C., Nierop, K. G. J., de Vos, R. C. H., Sastre Torano, J., van Der Meer, I. M., & Schluepmann, H. (2021). Azolla ferns testify: Seed plants and ferns share a common ancestor for leucoanthocyanidin reductase enzymes. The New Phytologist, 229(2), 1118–1132.

    Article  PubMed  Google Scholar 

  14. Matsui, K., Hisano, T., Yasui, Y., Mori, M., Walker, A. R., Morishita, T., & Katsu, K. (2016). Isolation and characterization of genes encoding leucoanthocyanidin reductase (FeLAR) and anthocyanidin reductase (FeANR) in buckwheat (Fagopyrum esculentum). Journal of Plant Physiology, 205, 41–47.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y., Shi, Z., Maximova, S., Payne, M. J., & Guiltinan, M. J. (2013). Proanthocyanidin synthesis in Theobroma cacao: Genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biology, 13, 202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brkljacic, J., & Grotewold, E. (2017). Combinatorial control of plant gene expression. Biochimica et biophysica acta Gene Regulatory Mechanisms, 1860(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  17. Juven-Gershon, T., & Kadonaga, J. T. (2010). Regulation of gene expression via the core promoter and the basal transcriptional machinery. Developmental Biology, 339(2), 225–229.

    Article  CAS  PubMed  Google Scholar 

  18. Haberle, V., & Lenhard, B. (2016). Promoter architectures and developmental gene regulation. Seminars in Cell & Developmental Biology, 57, 11–23.

    Article  CAS  Google Scholar 

  19. Schnurr, J. A., & Guerra, D. J. (2000). The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Reports, 19(3), 279–282.

    Article  CAS  PubMed  Google Scholar 

  20. de Mesa, M. C., Santiago-Doménech, N., Pliego-Alfaro, F., Quesada, M. A., & Mercado, J. A. (2004). The CaMV 35S promoter is highly active on floral organs and pollen of transgenic strawberry plants. Plant Cell Reports, 23(1–2), 32–38.

    Article  PubMed  Google Scholar 

  21. Ren, M., Chen, Q., Li, L., Zhang, R., & Guo, S. (2005). Functional analysis of a reproductive organ predominant expressing promoter in cotton plants. Science in China Series C, Life Sciences, 48(5), 452–459.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Zhu, Y., Wu, H., & Guo, H. (2016). Post-transcriptional gene silencing in plants: A double-edged sword. Science China Life Sciences, 59(3), 271–276.

    Article  PubMed  Google Scholar 

  23. Yi, N., Kim, Y. S., Jeong, M. H., Oh, S. J., Jeong, J. S., Park, S. H., Jung, H., Choi, Y. D., & Kim, J. K. (2010). Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta, 232(3), 743–754.

    Article  CAS  PubMed  Google Scholar 

  24. Bai, J., Wang, X., Wu, H., Ling, F., Zhao, Y., Lin, Y., & Wang, R. (2020). Comprehensive construction strategy of bidirectional green tissue-specific synthetic promoters. Plant Biotechnology Journal, 18(3), 668–678.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Tu, L., Ye, Z., Wang, M., Gao, W., & Zhang, X. (2015). A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Reports, 34(9), 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  26. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., & Rouzé, P. (2002). Rombauts S PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  28. Hacquard, T., Clavel, M., Baldrich, P., Lechner, E., Pérez-Salamó, I., Schepetilnikov, M., Derrien, B., Dubois, M., Hammann, P., Kuhn, L., & Brun, D. (2022). The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of illegitimate small RNA. Cell Reports, 39(2), 110671.

    Article  CAS  PubMed  Google Scholar 

  29. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology, 16(6), 735–743.

    Article  CAS  PubMed  Google Scholar 

  30. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong, W., He, S., Tian, J., Sun, J., Pan, Z., Jia, Y., Sun, G., & Du, X. (2014). Comparison of the transcriptome between two cotton lines of different fiber color and quality. PLoS ONE, 9(11), e112966.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gagné, S., Lacampagne, S., Claisse, O., & Gény, L. (2009). Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development. Plant Physiology and Biochemistry: PPB, 47(4), 282–90.

    Article  PubMed  Google Scholar 

  33. Liu, B., Zhu, Y., & Zhang, T. (2015). The R3-MYB gene GhCPC negatively regulates cotton fiber elongation. PLoS One, 10(2), e0116272-e.

    Article  Google Scholar 

  34. Balasubramanian, V. K., Rai, K. M., Thu, S. W., Hii, M. M., & Mendu, V. (2016). Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Scientific Reports, 6, 34309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olšovská, J., Kameník, Z., Čejka, P., Jurková, M., & Mikyška, A. (2013). Ultra-high-performance liquid chromatography profiling method for chemical screening of proanthocyanidins in Czech hops. Talanta, 116, 919–926.

    Article  PubMed  Google Scholar 

  36. Rinaldi, A., Jourdes, M., Teissedre, P. L., & Moio, L. (2014). A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chemistry, 164, 142–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, X., Xiao, J., Chen, S., Yu, Y., Ma, J., Lin, Y., Li, R., Lin, J., Fu, Z., Zhou, Q., & Chao, Q. (2020). Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications, 11(1), 5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin, G., Liu, C., Li, J., Qi, Y., Gao, Z., Zhang, X., Yi, X., Pan, H., Ming, R., & Xu, Y. (2020). Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: Exploring their relationship with genetic mechanisms of seed coat development. Horticulture Research, 7, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akagi, T., Tsujimoto, T., Ikegami, A., & Yonemori, K. (2011). Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb) fruit. Planta, 233(5), 883–94.

    Article  CAS  PubMed  Google Scholar 

  40. Gesell, A., Yoshida, K., Tran, L. T., & Constabel, C. P. (2014). Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta, 240(3), 497–511.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, J., Ai, X., Wang, Y., Lu, Q., Li, T., Wu, L., Sun, L., & Shen, H. (2020). Fine mapping of the Ca3GT gene controlling anthocyanin biosynthesis in mature unripe fruit of Capsicum annuum L. TAG Theoretical and Applied Genetics Theoretische und angewandte Genetik, 133(9), 2729–2742.

    Article  CAS  PubMed  Google Scholar 

  42. Liang, J., Zhang, H., Yi, L., Tang, Y., Long, H., Yu, M., & Deng, G. (2014). Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum). Genes & Genomics, 43(12), 1445–61.

    Article  Google Scholar 

  43. Wang, P., Zhang, L., Jiang, X., Dai, X., Xu, L., Li, T., Xing, D., Li, Y., Li, M., Gao, L., & Xia, T. (2018). Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta, 247(1), 139–154.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, J., Yu, K., Shi, Y., Wang, J., & Duan, C. (2020). Transcription factor VviMYB86 oppositely regulates proanthocyanidin and anthocyanin biosynthesis in grape berries. Frontiers in Plant Science, 11, 613677.

    Article  PubMed  Google Scholar 

  45. Lu, N., Rao, X., Li, Y., Jun, J. H., & Dixon, R. A. (2021). Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnology Journal, 19(7), 1429–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, C., Jun, J. H., & Dixon, R. A. (2014). MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiology, 165(4), 1424–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen, P. F., Ji, W., Gao, M. Y., Niu, T. Q., Xing, Y. F., & Niu, X. Y. (2015). Accumulation of flavanols and expression of leucoanthocyanidin reductase induced by postharvest UV-C irradiation in grape berry. Genetics and Molecular Research: GMR, 14(3), 7687–7695.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province, China (LQ22C150004) and the Fundamental Research Funds of Zhejiang Sci-Tech University (11613132612007). We thank all colleagues for their constructive discussions and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Fangfang.

Ethics declarations

Conflict of interest

The authors declare that they have no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 443 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, B., Zhu, N. et al. Identification and Functional Analysis of the Promoter of a Leucoanthocyanidin Reductase Gene from Gossypium hirsutum. Mol Biotechnol 65, 645–654 (2023). https://doi.org/10.1007/s12033-022-00571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00571-4

Keywords

Navigation