Skip to main content

Advertisement

Log in

Comprehensive Analyses of Prognostic Values and Immune Infiltration of KDM3 Gene Family in Hepatocellular Carcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed malignancy globally with a pessimistic prognosis. Previous studies have demonstrated that abnormal expression of genes in the lysine-specific histone demethylase 3 (KDM3) family with epigenetic changes and dysregulation of enzymes promotes cancer progression. In this study, multiomics analyses were utilized to analyze differential expression, prognostic value, genetic alteration, protein–protein interaction, associated biological pathways and immune cell infiltration of KDM3s in patients with HCC. KDM3A-C were significantly upregulated to different extents based on pathologic and tumor grades in patients with HCC compared to normal tissue. Of note, higher KDM3A expression was associated with poor survival in HCC patients, whereas KDM3B and KDM3C were not associated with survival. Furthermore, KDM3A-B genetic alterations had significant effects on survival in patients with HCC. Analyses of the KEGG pathway and miRNAs targets of KDM3A and KDM3B in HCC may provide potential value in tumor behaviors and treatment. The differential expression of the KDM3 family has a strongly significant correlation with the infiltration of the abundance of immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC. This study indicates that KDM3A may have the potential to be a promising molecular target in terms of prognostic biomarkers or therapeutic targets for HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and materials used in this study are available from the corresponding author if reasonably required.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  2. Marrero, C. R., & Marrero, J. A. (2007). Viral hepatitis and hepatocellular carcinoma. Archives of Medical Research, 38(6), 612–620.

    Article  CAS  PubMed  Google Scholar 

  3. Razavi, H. (2020). Global epidemiology of viral hepatitis. Gastroenterology Clinics of North America, 49(2), 179–189.

    Article  PubMed  Google Scholar 

  4. Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., & Roberts, L. R. (2019). A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nature Reviews. Gastroenterology & Hepatology, 16(10), 589–604.

    Article  Google Scholar 

  5. Yoo, J., Jeon, Y. H., Cho, H. Y., Lee, S. W., Kim, G. W., Lee, D. H., et al. (2020). Advances in histone demethylase KDM3A as a cancer therapeutic target. Cancers (Basel). https://doi.org/10.3390/cancers12051098

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sui, Y., Gu, R., & Janknecht, R. (2021). Crucial functions of the JMJD1/KDM3 epigenetic regulators in cancer. Molecular Cancer Research, 19(1), 3–13.

    Article  CAS  PubMed  Google Scholar 

  7. Li, S., Ali, S., Duan, X., Liu, S., Du, J., Liu, C., et al. (2018). JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Reports, 23(2), 389–403.

    Article  CAS  PubMed  Google Scholar 

  8. An, M. J., Kim, D. H., Kim, C. H., Kim, M., Rhee, S., Seo, S. B., et al. (2019). Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells. Biochemical and Biophysical Research Communications, 508(2), 576–582.

    Article  CAS  PubMed  Google Scholar 

  9. Cai, Y., Fu, X., & Deng, Y. (2017). Histone demethylase JMJD1C regulates esophageal cancer proliferation Via YAP1 signaling. American Journal of Cancer Research, 7(1), 115–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, C., Aihemaiti, M., Zhang, X., Qu, H., Sun, Q. L., He, Q. S., et al. (2018). Downregulation of histone demethylase JMJD1C inhibits colorectal cancer metastasis through targeting ATF2. American Journal of Cancer Research, 8(5), 852–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, L., Kim, H., Casta, A., Kobayashi, Y., Shapiro, L. S., & Christiano, A. M. (2014). Hairless is a histone H3K9 demethylase. The FASEB Journal, 28(4), 1534–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada, D., Kobayashi, S., Yamamoto, H., Tomimaru, Y., Noda, T., Uemura, M., et al. (2012). Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: Clinical impact on recurrence after hepatic resection. Annals of Surgical Oncology, 19(Suppl 3), S355–S364.

    Article  PubMed  Google Scholar 

  13. Petrick, J. L., Kelly, S. P., Altekruse, S. F., McGlynn, K. A., & Rosenberg, P. S. (2016). Future of Hepatocellular Carcinoma Incidence in the United States Forecast Through 2030. Journal of Clinical Oncology, 34(15), 1787–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanwal, R., & Gupta, S. (2012). Epigenetic modifications in cancer. Clinical Genetics, 81(4), 303–311.

    Article  CAS  PubMed  Google Scholar 

  15. Park, S. J., Kim, J. G., Son, T. G., Yi, J. M., Kim, N. D., Yang, K., et al. (2013). The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Biochemical and Biophysical Research Communications, 434(4), 722–727.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J. Y., Mehrazarin, S., Alshaikh, A., Kim, S., Chen, W., Lux, R., et al. (2019). Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-kappaB signaling and osteoclastogenesis. The FASEB Journal, 33(9), 10515–10527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luedde, T., & Schwabe, R. F. (2011). NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nature Reviews. Gastroenterology & Hepatology, 8(2), 108–118.

    Article  CAS  Google Scholar 

  18. Sarac, H., Morova, T., Pires, E., McCullagh, J., Kaplan, A., Cingoz, A., et al. (2020). Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene, 39(10), 2187–2201.

    Article  CAS  PubMed  Google Scholar 

  19. Sterling, J., Menezes, S. V., Abbassi, R. H., & Munoz, L. (2020). Histone lysine demethylases and their functions in cancer. International Journal of Cancer. https://doi.org/10.1002/ijc.33375

    Article  PubMed  Google Scholar 

  20. Nakatsuka, T., Tateishi, K., Kudo, Y., Yamamoto, K., Nakagawa, H., Fujiwara, H., et al. (2017). Impact of histone demethylase KDM3A-dependent AP-1 transactivity on hepatotumorigenesis induced by PI3K activation. Oncogene, 36(45), 6262–6271.

    Article  CAS  PubMed  Google Scholar 

  21. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., et al. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125(3), 483–495.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, H., Li, X. X., Yang, Y., Zhang, Y., Wang, H. Y., & Zheng, X. F. S. (2018). Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology, 67(6), 2271–2286.

    Article  CAS  PubMed  Google Scholar 

  23. Abe, Y., Fujiwara, Y., Takahashi, H., Matsumura, Y., Sawada, T., Jiang, S., et al. (2018). Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nature Communications, 9(1), 1566.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rios-Colon, L., Arthur, E., Niture, S., Qi, Q., Moore, J. T., & Kumar, D. (2020). The role of exosomes in the crosstalk between adipocytes and liver cancer cells. Cells. https://doi.org/10.3390/cells9091988

    Article  PubMed  PubMed Central  Google Scholar 

  25. Afify, S. M., Sanchez Calle, A., Hassan, G., Kumon, K., Nawara, H. M., Zahra, M. H., et al. (2020). A novel model of liver cancer stem cells developed from induced pluripotent stem cells. British Journal of Cancer, 122(9), 1378–1390.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tamasi, V., Monostory, K., Prough, R. A., & Falus, A. (2011). Role of xenobiotic metabolism in cancer: Involvement of transcriptional and miRNA regulation of P450s. Cellular and Molecular Life Sciences, 68(7), 1131–1146.

    Article  CAS  PubMed  Google Scholar 

  27. Haas, S., Merkelbach-Bruse, S., Justenhoven, C., Brauch, H., & Fischer, H. P. (2009). Expression of xenobiotic and steroid hormone metabolizing enzymes in hepatocellular tumors of the non-cirrhotic liver. Pathology, Research and Practice, 205(10), 716–725.

    Article  PubMed  Google Scholar 

  28. Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N., & Koike, K. (2018). Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers10110447

    Article  PubMed  Google Scholar 

  29. Viscarra, J., & Sul, H. S. (2020). Epigenetic regulation of hepatic lipogenesis: Role in hepatosteatosis and Diabetes. Diabetes, 69(4), 525–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E., & Adinolfi, E. (2018). Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nature Reviews Cancer, 18(10), 601–618.

    Article  PubMed  Google Scholar 

  31. Chen, W., Bi, K., Zhang, X., Jiang, J., & Diao, H. (2020). In-depth characterization of the biomarkers based on tumor-infiltrated immune cells reveals implications for diagnosis and prognosis in hepatocellular carcinoma. J Transl Autoimmun, 3, 100067.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sangro, B., Sarobe, P., Hervas-Stubbs, S., & Melero, I. (2021). Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews. Gastroenterology & Hepatology, 18(8), 525–543.

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Ministry of Science and Technology (Grant No. MOST 109-2314-B-016-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yen-Ju Chen or Kuo-Feng Hsu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical Approval

The data in this study is obtained from the public datasets, and therefore no ethical approval is needed.

Consent to Participate

The data in this study is obtained from the public datasets, and therefore no ethical approval is needed.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GH., Wu, SH., Ko, YC. et al. Comprehensive Analyses of Prognostic Values and Immune Infiltration of KDM3 Gene Family in Hepatocellular Carcinoma. Mol Biotechnol 65, 752–765 (2023). https://doi.org/10.1007/s12033-022-00568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00568-z

Keywords

Navigation