Skip to main content
Log in

Development of Chromatin Immunoprecipitation for the Analysis of Histone Modifications in Red Macroalga Neopyropia yezoensis (Rhodophyta)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Epigenetic regulation by histone modification can activate or repress transcription through changes in chromatin dynamics and regulates development and the response to environmental signals in both animals and plants. Chromatin immunoprecipitation (ChIP) is an indispensable tool to identify histones with specific post-translational modifications. The lack of a ChIP technique for macroalgae has hindered understanding of the role of histone modification in the expression of genes in this organism. In this study, a ChIP method with several modifications, based on existing protocols for plant cells, has been developed for the red macroalga, Neopyropia yezoensis, that consists of a heterogeneous alternation of macroscopic leaf-like gametophytes and microscopic filamentous sporophytes. ChIP method coupled with qPCR enables the identification of a histone mark in generation-specific genes from N. yezoensis. The results indicate that acetylation of histone H3 at lysine 9 in the 5′ flanking and coding regions from generation-specific genes was maintained at relatively high levels, even in generation-repressed gene expression. The use of this ChIP method will contribute significantly to identify the epigenetic regulatory mechanisms through histone modifications that control a variety of biological processes in red macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  2. Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 17, 487–500.

    Article  CAS  PubMed  Google Scholar 

  3. Onufriev, A. V., & Schiessel, H. (2019). The nucleosome: From structure to function through physics. Current Opinion in Structural Biology, 56, 119–130.

    Article  CAS  PubMed  Google Scholar 

  4. Teperino, R., Schoonjans, K., & Auwerx, J. (2010). Histone methyl transferases and demethylases; Can they link metabolism and transcription? Cell Metabolism, 12, 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourdareau, S., Tirichine, L., Lombard, B., Loew, D., Scornet, D., Wu, Y., Coelho, S. M., & Cock, J. M. (2021). Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biology, 22, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson, J. D., Denisenko, O., & Bomsztyk, K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols, 1, 179–185.

    Article  CAS  PubMed  Google Scholar 

  7. Orlando, V. (2000). Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends in Biochemical Sciences, 25, 99–104.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, X. R., Pan, Q. W., Lin, Y., Gu, T. T., & Li, Y. (2020). A native chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in strawberry fruits. Plant Methods. https://doi.org/10.1186/s13007-020-0556-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. O’neill, L. P., & Turner, B. M. (2003). Immunoprecipitation of native chromatin: NChIP. Methods, 31, 76–82.

    Article  PubMed  Google Scholar 

  10. Drew, K. (1949). Conchocelis-phase in the life history of Porphyra umbilicalis (L.) Kütz. Nature, 164, 748–749.

    Article  Google Scholar 

  11. Iwasaki, H. (1961). The life cycle of Porphyra tenera in vitro. Biological Bulletin of the Marine Biological Laboratory, Woods Hole, 121, 173–187.

    Article  Google Scholar 

  12. Kurogi, M. (1953). Studies of the life history of Porphyra. I. The germination and development of carpospores. Bulletin of Tohoku Regional Fisheries Research Laboratory, 2, 67–103.

    Google Scholar 

  13. Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H., & Yan, X. (2014). Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE. https://doi.org/10.1371/journal.pone.0094354

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uji, T., Gondaira, Y., Fukuda, S., Mizuta, H., & Saga, N. (2019). Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress and Chaperones, 24, 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue, A., Mashino, C., Uji, T., Saga, N., Mikami, K., & Ojima, T. (2015). Characterization of an eukaryotic PL-7 alginate lyase in the marine red alga Pyropia yezoensis. Current Biotechnology, 4, 240–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuda, R., Ozgur, R., Higashi, Y., Takechi, K., Takano, H., & Takio, S. (2015). Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis. Marine Biotechnology, 17, 199–210.

    Article  CAS  PubMed  Google Scholar 

  17. Uji, T., Hirata, R., Mikami, K., Mizuta, H., & Saga, N. (2012). Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Molecular Biology Reports, 39, 7973–7980.

    Article  CAS  PubMed  Google Scholar 

  18. Uji, T., Mizuta, H., & Saga, N. (2013). Characterization of the sporophyte-preferential gene promoter from the red alga Porphyra yezoensis using transient gene expression. Marine Biotechnology, 15, 188–196.

    Article  CAS  PubMed  Google Scholar 

  19. Uji, T., Ueda, S., & Mizuta, H. (2022). Identification, characterization, and expression analysis of spondin-like and fasciclin-like genes in Neopyropia yezoensis, a marine red alga. Phycology, 2, 45–59.

    Article  Google Scholar 

  20. Chan, C. X., Blouin, N. A., Zhuang, Y., Zäuner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Müller, K. W., Stiller, J., Brawley, S. H., & Bhattacharya, D. (2012). Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. Journal of Phycology, 48, 1328–1342.

    Article  CAS  PubMed  Google Scholar 

  21. Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.

    Article  Google Scholar 

  22. Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H.-G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D., & Müller, K. M. (2011). A new look at an ancient order: Generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47, 1131–1151.

    Article  PubMed  Google Scholar 

  23. Saleh, A., Alvarez-Venegas, R., & Avramova, Z. (2008). An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nature Protocols, 3, 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  24. Kuwano, K., Aruga, Y., & Saga, N. (1996). Cryopreservation of clonal gametophytic thalli of Porphyra (Rhodophyta). Plant Science., 116, 117–124.

    Article  CAS  Google Scholar 

  25. Provasoli, L. (1996). Media and prospects for the cultivation of marine algae. In: A. Watanabe, & A. Hattori (Eds.), Culture and collections of algae, Proc U S-Japan Conf, Hakone, Jpn Soc Plant Physiol, Tokyo, 1968 (pp. 63–75)

  26. Uji, T., Matsuda, R., Takechi, K., Takano, H., Mizuta, H., & Takio, S. (2016). Ethylene regulation of sexual reproduction in the marine red alga Pyropia yezoensis (Rhodophyta). Journal of Applied Phycology, 28, 3501–3509.

    Article  CAS  Google Scholar 

  27. Ali, S., Khan, N., & Tang, Y. (2022). Epigenetic marks for mitigating abiotic stresses in plants. Journal of Plant Physiology, 275, 153740.

    Article  CAS  PubMed  Google Scholar 

  28. Loidl, P. (2004). A plant dialect of the histone language. Trends in Plant Science, 9, 84–90. https://doi.org/10.1016/j.tplants.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  29. Vastenhouw, N. L., & Schier, A. F. (2012). Bivalent histone modifications in early embryogenesis. Current Opinion in Cell Biology, 24, 374–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurita, K., Sakamoto, T., Yagi, N., Sakamoto, Y., Ito, A., Nishino, N., Sako, K., Yoshida, M., Kimura, H., Seki, M., & Matsunaga, S. (2017). Live imaging of H3K9 acetylation in plant cells. Scientific Reports, 7, 45894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, J., Wang, X., He, K., Charron, J. B., Elling, A. A., & Deng, X. W. (2010). Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Molecular Biology, 72, 585–595.

    Article  CAS  PubMed  Google Scholar 

  32. Wei, L., & Xu, J. (2018). Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp. Journal of Phycology., 54, 358–367.

    Article  CAS  PubMed  Google Scholar 

  33. Kominami, S., Mizuta, H., & Uji, T. (2022). Transcriptome profiling in the marine red alga Neopyropia yezoensis under light/dark cycle. Marine Biotechnology, 24, 393–407.

    Article  CAS  PubMed  Google Scholar 

  34. Hennig, L., Bouveret, R., & Gruissem, W. (2005). MSI1-like proteins: An escort service for chromatin assembly and remodeling complexes. Trends in Cell Biology, 15, 295–302.

    Article  CAS  PubMed  Google Scholar 

  35. Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D., & Jenuwein, T. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593–599.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmad, A., Zhang, Y., & Cao, X. F. (2010). Decoding the epigenetic language of plant development. Molecular Plant, 3, 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skvortsova, K., Iovino, N., & Bogdanović, O. (2018). Functions and mechanisms of epigenetic inheritance in animals. Nature Reviews Molecular Cell Biology, 19, 774–790.

    Article  CAS  PubMed  Google Scholar 

  38. Yu, C., Xu, K., Wang, W., Xu, Y., Ji, D., Chen, C., & Xie, C. (2018). Detection of changes in DNA methylation patterns in Pyropia haitanensis under high-temperature stress using a methylation-sensitive amplified polymorphism assay. Journal of Applied Phycology, 30, 2091–2100.

    Article  CAS  Google Scholar 

  39. Cao, M., Wang, D., Kong, F., Wang, J., Xu, K., & Mao, Y. (2019). A genome-wide identification of osmotic stress-responsive microRNAs in Pyropia haitanensis (Bangiales, Rhodophyta). Frontiers in Marine Science, 6, 766.

    Article  Google Scholar 

  40. He, L., Huang, A., Shen, S., Niu, J., & Wang, G. (2012). Comparative analysis of microRNAs between sporophyte and gametophyte of Porphyra yezoensis. Comparative and Functional Genomics. https://doi.org/10.1155/2012/912843

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs. Katsutoshi Arai, Takafumi Fujimoto, and Toshiya Nishimura (Hokkaido University, Japan) for kindly providing the LightCycler 480 system.

Funding

This work was supported by the Grant-in-Aid for Young Scientists [Grant Number 19K15907 and 22K05779 to TU] from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Uji.

Ethics declarations

Conflict of interest

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 46 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, S., Mizuta, H. & Uji, T. Development of Chromatin Immunoprecipitation for the Analysis of Histone Modifications in Red Macroalga Neopyropia yezoensis (Rhodophyta). Mol Biotechnol 65, 590–597 (2023). https://doi.org/10.1007/s12033-022-00562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00562-5

Keywords

Navigation