Skip to main content

Advertisement

Log in

Knockdown of Krüppel-Like Factor 9 Inhibits Aberrant Retinal Angiogenesis and Mitigates Proliferative Diabetic Retinopathy

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Advanced proliferative diabetic retinopathy (PDR) characterized by aberrant retinal angiogenesis is a leading cause of retinal detachment and blindness. Krüppel-like factor 9 (KLF9), a member of the zinc-finger family of transcription factors, participates in the development of diabetic nephropathy and the promotion of angiogenesis of human umbilical vein endothelial cells. Therefore, we speculate that KLF9 may exert a crucial role in PDR. The current study revealed that KLF9 was highly expressed in the high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs) and the retinas of oxygen-induced retinopathy (OIR) rats. Knockdown of KLF9 inhibited the proliferation, migratory capability, invasiveness and tube formation of HG-treated HRMECs. Besides, knockdown of KLF9 decreased the expression of yes-associated protein 1 (YAP1) in HG-treated HRMECs. Dual-luciferase reporter assays confirmed that KLF9 transcriptionally upregulated YAP1 expression. Overexpression of YAP1 reversed the KLF9 silencing-induced repression of HRMEC proliferation and tube formation. Further in vivo evidence demonstrated that knockdown of KLF9 reduced the expression of Ki67, CD31 and vascular endothelial growth factor A (VEGFA) in the retinas of OIR rats. Collectively, KLF9 silencing might mitigate the progression of PDR by inhibiting angiogenesis via blocking YAP1 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.

    Article  CAS  PubMed  Google Scholar 

  2. Stitt, A. W., Curtis, T. M., Chen, M., Medina, R. J., McKay, G. J., Jenkins, A., Gardiner, T. A., Lyons, T. J., Hammes, H. P., Simo, R., & Lois, N. (2016). The progress in understanding and treatment of diabetic retinopathy. Progress in Retinal and Eye Research, 51, 156–186.

    Article  PubMed  Google Scholar 

  3. Gucciardo, E., Loukovaara, S., Salven, P., & Lehti, K. (2018). Lymphatic vascular structures: a new aspect in proliferative diabetic retinopathy. Int J Mol Sci., 19, 4034.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ruiz, M. A., Feng, B., & Chakrabarti, S. (2015). Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: Potential relevance in diabetic retinopathy. PLoS ONE, 10, e0123987.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Potente, M., Gerhardt, H., & Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell, 146, 873–887.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Lu, X., Hu, Y., Yang, B., Tsui, C. K., Yu, S., Lu, L., & Liang, X. (2018). Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice. Journal of Pineal Research, 64, e12473.

    Article  PubMed  Google Scholar 

  7. Bagati, A., Moparthy, S., Fink, E. E., Bianchi-Smiraglia, A., Yun, D. H., Kolesnikova, M., Udartseva, O. O., Wolff, D. W., Roll, M. V., Lipchick, B. C., Han, Z., Kozlova, N. I., Jowdy, P., Berman, A. E., Box, N. F., Rodriguez, C., Bshara, W., Kandel, E. S., Soengas, M. S., … Nikiforov, M. A. (2019). KLF9-dependent ROS regulate melanoma progression in stage-specific manner. Oncogene, 38, 3585–3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tetreault, M. P., Yang, Y., & Katz, J. P. (2013). Kruppel-like factors in cancer. Nature Reviews Cancer, 13, 701–713.

    Article  CAS  PubMed  Google Scholar 

  9. He, X., & Zeng, X. (2020). LncRNA SNHG16 aggravates high glucose-induced podocytes injury in diabetic nephropathy through targeting miR-106a and thereby up-regulating KLF9. Diabetes, Metabolism, Syndrome and Obesity: Targets and Therapy, 13, 3551–3560.

    Article  CAS  Google Scholar 

  10. Cui, A., Fan, H., Zhang, Y., Zhang, Y., Niu, D., Liu, S., Liu, Q., Ma, W., Shen, Z., Shen, L., Liu, Y., Zhang, H., Xue, Y., Cui, Y., Wang, Q., Xiao, X., Fang, F., Yang, J., Cui, Q., & Chang, Y. (2019). Dexamethasone-induced Kruppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. The Journal of Clinical Investigation, 129, 2266–2278.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, H., Weng, Y., Lai, L., Lei, H., Xu, S., Zhang, Y., & Li, L. (2021). KLF9 regulates PRDX6 expression in hyperglycemia-aggravated bupivacaine neurotoxicity. Molecular and Cellular Biochemistry, 476, 2125–2134.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, L., Li, Z., Li, W., Ai, J., & Chen, X. (2019). MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biology, 16, 1733–1748.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Piccolo, S., Dupont, S., & Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and beyond. Physiological Reviews, 94, 1287–1312.

    Article  CAS  PubMed  Google Scholar 

  14. Wen, D., Wang, L., Tan, S., Tang, R., Xie, W., Liu, S., Tang, C., & He, Y. (2020). HOXD9 aggravates the development of cervical cancer by transcriptionally activating HMCN1. Panminerva Medica. https://doi.org/10.23736/S0031-0808.20.03911-7

    Article  PubMed  Google Scholar 

  15. Chen, J., Wang, X., He, Q., Bulus, N., Fogo, A. B., Zhang, M. Z., & Harris, R. C. (2020). YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes, 69, 2446–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, J., Xu, L., & Zhan, X. (2020). LncRNA MALAT1 regulates diabetic cardiac fibroblasts through the Hippo-YAP signaling pathway. Biochemistry and Cell Biology, 98, 537–547.

    Article  CAS  PubMed  Google Scholar 

  17. Pan, Q., Gao, Z., Zhu, C., Peng, Z., Song, M., & Li, L. (2020). Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1alpha/VEGFA depletion. American Journal of Physiology: Endocrinology and Metabolism, 319, E932–E943.

    CAS  PubMed  Google Scholar 

  18. Han, N., Tian, W., Yu, N., & Yu, L. (2020). YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1-mediated miR-200b-3p in high glucose-induced diabetic retinopathy. Journal of Cellular Physiology, 235, 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z., Xing, W., Song, Y., Li, H., Liu, Y., Wang, Y., Li, C., Wang, Y., Wu, Y., & Han, J. (2018). Folic acid has a protective effect on retinal vascular endothelial cells against high glucose. Molecules., 23, 2326.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lam, J. D., Oh, D. J., Wong, L. L., Amarnani, D., Park-Windhol, C., Sanchez, A. V., Cardona-Velez, J., McGuone, D., Stemmer-Rachamimov, A. O., Eliott, D., Bielenberg, D. R., van Zyl, T., Shen, L., Gai, X., D’Amore, P. A., Kim, L. A., & Arboleda-Velasquez, J. F. (2017). Identification of RUNX1 as a mediator of aberrant retinal angiogenesis. Diabetes, 66, 1950–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Connor, K. M., Krah, N. M., Dennison, R. J., Aderman, C. M., Chen, J., Guerin, K. I., Sapieha, P., Stahl, A., Willett, K. L., & Smith, L. E. (2009). Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis. Nature Protocols, 4, 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernando, K. H. N., Yang, H. W., Jiang, Y., Jeon, Y. J., & Ryu, B. (2018). Diphlorethohydroxycarmalol isolated from Ishige okamurae represses high glucose-induced angiogenesis in vitro and in vivo. Mar Drugs., 16, 375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, R., Du, J., Yao, Y., Yao, G., & Wang, X. (2019). Adiponectin inhibits high glucose-induced angiogenesis via inhibiting autophagy in RF/6A cells. Journal of Cellular Physiology, 234, 20566–20576.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Wang, L., Guo, H., Peng, Y., Nie, D., Mo, J., & Ye, L. (2020). Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells. Biomedicine & Pharmacotherapy, 124, 109699.

    Article  CAS  Google Scholar 

  25. Fallah, A., Sadeghinia, A., Kahroba, H., Samadi, A., Heidari, H. R., Bradaran, B., Zeinali, S., & Molavi, O. (2019). Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomedicine & Pharmacotherapy, 110, 775–785.

    Article  CAS  Google Scholar 

  26. Hartnett, M. E. (2015). Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology, 122, 200–210.

    Article  PubMed  Google Scholar 

  27. Abdullah, S. E., & Perez-Soler, R. (2012). Mechanisms of resistance to vascular endothelial growth factor blockade. Cancer, 118, 3455–3467.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J. W., Ko, J., Ju, C., & Eltzschig, H. K. (2019). Hypoxia signaling in human diseases and therapeutic targets. Experimental & Molecular Medicine, 51, 1–13.

    Article  Google Scholar 

  29. Han, N., Xu, H., Yu, N., Wu, Y., & Yu, L. (2020). MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1alpha. Clinical and Experimental Pharmacology and Physiology, 47, 85–94.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, W. Y., Wang, J., & Li, A. Z. (2020). A study of the effects of SGLT-2 inhibitors on diabetic cardiomyopathy through miR-30d/KLF9/VEGFA pathway. European Review for Medical and Pharmacological Sciences, 24, 6346–6359.

    PubMed  Google Scholar 

  31. Millimaggi, D., Mari, M., D’Ascenzo, S., Carosa, E., Jannini, E. A., Zucker, S., Carta, G., Pavan, A., & Dolo, V. (2007). Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia, 9, 349–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abu El-Asrar, A. M., Ahmad, A., Alam, K., Siddiquei, M. M., Mohammad, G., Hertogh, G., Mousa, A., & Opdenakker, G. (2017). Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmologica, 95, 697–704.

    Article  CAS  PubMed  Google Scholar 

  33. Noda, K., Ishida, S., Inoue, M., Obata, K., Oguchi, Y., Okada, Y., & Ikeda, E. (2003). Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Investigative Ophthalmology & Visual Science, 44, 2163–2170.

    Article  Google Scholar 

  34. Zhong, Z., Zhou, F., Wang, D., Wu, M., Zhou, W., Zou, Y., Li, J., Wu, L., & Yin, X. (2018). Expression of KLF9 in pancreatic cancer and its effects on the invasion, migration, apoptosis, cell cycle distribution, and proliferation of pancreatic cancer cell lines. Oncology Reports, 40, 3852–3860.

    CAS  PubMed  Google Scholar 

  35. Zhu, M., Liu, X., Wang, Y., Chen, L., Wang, L., Qin, X., Xu, J., Li, L., Tu, Y., Zhou, T., Sang, A., & Song, E. (2018). YAP via interacting with STAT3 regulates VEGF-induced angiogenesis in human retinal microvascular endothelial cells. Experimental Cell Research, 373, 155–163.

    Article  CAS  PubMed  Google Scholar 

  36. Yan, Z., Shi, H., Zhu, R., Li, L., Qin, B., Kang, L., Chen, H., & Guan, H. (2018). Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Molecular Vision, 24, 83–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Potilinski, M. C., Lorenc, V., Perisset, S., & Gallo, J. E. (2020). Mechanisms behind retinal ganglion cell loss in diabetes and therapeutic approach. International Journal of Molecular Sciences, 21, 2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amato, R., Lazzara, F., Chou, T. H., Romano, G. L., Cammalleri, M., Dal Monte, M., Casini, G., & Porciatti, V. (2021). Diabetes exacerbates the intraocular pressure-independent retinal ganglion cells degeneration in the DBA/2J model of glaucoma. Investigative Ophthalmology & Visual Science, 62, 9.

    Article  CAS  Google Scholar 

  39. Apara, A., Galvao, J., Wang, Y., Blackmore, M., Trillo, A., Iwao, K., Brown, D. P., Jr., Fernandes, K. A., Huang, A., Nguyen, T., Ashouri, M., Zhang, X., Shaw, P. X., Kunzevitzky, N. J., Moore, D. L., Libby, R. T., & Goldberg, J. L. (2017). KLF9 and JNK3 interact to suppress axon regeneration in the adult CNS. Journal of Neuroscience, 37, 9632–9644.

    Article  CAS  PubMed  Google Scholar 

  40. Galvao, J., Iwao, K., Apara, A., Wang, Y., Ashouri, M., Shah, T. N., Blackmore, M., Kunzevitzky, N. J., Moore, D. L., & Goldberg, J. L. (2018). The Kruppel-like factor gene target dusp14 regulates axon growth and regeneration. Investigative Ophthalmology & Visual Science, 59, 2736–2747.

    Article  CAS  Google Scholar 

  41. Xie, J., Gong, Q., Liu, X., Liu, Z., Tian, R., Cheng, Y., & Su, G. (2017). Transcription factor SP1 mediates hyperglycemia-induced upregulation of roundabout4 in retinal microvascular endothelial cells. Gene, 616, 31–40.

    Article  CAS  PubMed  Google Scholar 

  42. Cao, X., Xue, L. D., Di, Y., Li, T., Tian, Y. J., & Song, Y. (2021). MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sciences, 272, 119232.

    Article  CAS  PubMed  Google Scholar 

  43. Wilkinson-Berka, J. L., Tan, G., Jaworski, K., Harbig, J., & Miller, A. G. (2009). Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circulation Research, 104, 124–133.

    Article  CAS  PubMed  Google Scholar 

  44. Deliyanti, D., Zhang, Y., Khong, F., Berka, D. R., Stapleton, D. I., Kelly, D. J., & Wilkinson-Berka, J. L. (2015). FT011, a novel cardiorenal protective drug, reduces inflammation, gliosis and vascular injury in rats with diabetic retinopathy. PLoS ONE, 10, e0134392.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, N., Zhang, L., Guo, M. et al. Knockdown of Krüppel-Like Factor 9 Inhibits Aberrant Retinal Angiogenesis and Mitigates Proliferative Diabetic Retinopathy. Mol Biotechnol 65, 612–623 (2023). https://doi.org/10.1007/s12033-022-00559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00559-0

Keywords

Navigation