Skip to main content

Advertisement

Log in

Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) is a prevalent malignant tumor in women and is characterized by high incidence and mortality. Current evidence has suggested that multiple long noncoding RNAs (lncRNAs) play regulatory roles in TNBC, while the specific mechanism of LINC01224 in TNBC remains unclear. In this study, LINC01224 was highly expressed in TNBC cells. Moreover, LINC01224 downregulation inhibited TNBC cell proliferation, migration, and invasion, and promoted cell apoptosis. Additionally, LINC01224 stabilized NUP210 mRNA through interaction with miR-193a-5p, thereby aggravating the malignant phenotypes of TNBC. Overall, LINC01224 functions as a tumor promoter for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anastasiadi, Z., Lianos, G. D., Ignatiadou, E., Harissis, H. V., & Mitsis, M. (2017). Breast cancer in young women: An overview. Updates in Surgery, 69(3), 313–317. https://doi.org/10.1007/s13304-017-0424-1

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  3. Chou, J., Quigley, D., Robinson, T., Feng, F., & Ashworth, A. JCd. (2020). Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discovery, 10(3), 351–370. https://doi.org/10.1158/2159-8290.Cd-19-0528

    Article  CAS  PubMed  Google Scholar 

  4. Samadi, P., Saki, S., Dermani, F., Pourjafar, M., & Saidijam, M. JCo. (2018). Emerging ways to treat breast cancer: will promises be met? Cellular Oncology, 41(6), 605–621. https://doi.org/10.1007/s13402-018-0409-1

    Article  CAS  Google Scholar 

  5. Vagia, E., Mahalingam, D., & Cristofanilli, M. (2020). The landscape of targeted therapies in TNBC. Cancers. https://doi.org/10.3390/cancers12040916

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Sullivan, C., Loprinzi, C., & Haddad, T. C. (2018). Updates in the evaluation and management of breast cancer. Mayo Clinic Proceedings, 93(6), 794–807. https://doi.org/10.1016/j.mayocp.2018.03.025

    Article  PubMed  Google Scholar 

  7. Tang, L., Chen, Y., Tang, X., Wei, D., Xu, X., & Yan, F. (2020). DCST1-AS1 long noncoding RNA promotes cell proliferation and metastasis in triple-negative breast cancer by forming a positive regulatory loop with miR-873–5p and MYC. Journal of Cancer, 11(2), 311–323. https://doi.org/10.7150/jca.33982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marotti, J. D., de Abreu, F. B., Wells, W. A., & Tsongalis, G. J. (2017). Triple-negative breast cancer: Next-generation sequencing for target identification. The American journal of pathology, 187(10), 2133–2138. https://doi.org/10.1016/j.ajpath.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  9. Tan, Q., Yin, S., Zhou, D., Chi, Y., Man, X., & Li, H. (2022). Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Frontiers in Oncology, 12, 779786. https://doi.org/10.3389/fonc.2022.779786

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marra, A., Trapani, D., Viale, G., Criscitiello, C., & Curigliano, G. (2020). Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer, 6, 54. https://doi.org/10.1038/s41523-020-00197-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kok, V. C., Wang, C. C. N., Liao, S. H., & Chen, D. L. (2022). Cross-platform in-silico analyses exploring tumor immune microenvironment with prognostic value in triple-negative breast cancer. Breast cancer (Dove Medical Press), 14, 85–99. https://doi.org/10.2147/bctt.S359346

    Article  CAS  PubMed  Google Scholar 

  12. Loewen, G., Jayawickramarajah, J., Zhuo, Y., & Shan, B. (2014). Functions of lncRNA HOTAIR in lung cancer. Journal of hematology & oncology, 7, 90. https://doi.org/10.1186/s13045-014-0090-4

    Article  CAS  Google Scholar 

  13. Quinn, J., & Chang, H. Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17(1), 47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  14. Song, M., Zhong, A., Yang, J., He, J., Cheng, S., Zeng, J., Huang, Y., Pan, Q., Zhao, J., Zhou, Z., Zhu, Q., Tang, Y., Chen, H., Yang, C., Liu, Y., Mo, X., Weng, D., & Xia, J.-C. (2019). Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging, 11(22), 10422–10453. https://doi.org/10.18632/aging.102468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu, X., Ravindranath, L., Tran, N., Petrovics, G., & Srivastava, S. (2006). Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA and Cell Biology, 25(3), 135–141. https://doi.org/10.1089/dna.2006.25.135

    Article  PubMed  Google Scholar 

  16. Song, J., Su, Z., & Shen, Q.-M. (2020). Long non-coding RNA MALAT1 regulates proliferation, apoptosis, migration and invasion via miR-374b-5p/SRSF7 axis in non-small cell lung cancer. European Review for Medical and Pharmacological Sciences, 24(4), 1853–1862. https://doi.org/10.26355/eurrev_202002_20363

    Article  CAS  PubMed  Google Scholar 

  17. Shang, A., Wang, W., Gu, C., Chen, W., Lu, W., Sun, Z., & Li, D. (2020). Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging, 12(9), 8301–8320. https://doi.org/10.18632/aging.103139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, G. H., & Wang, X. (2017). lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. European Review for Medical and Pharmacological Sciences, 21(17), 3850–3856.

    PubMed  Google Scholar 

  19. Fan, Y., Sheng, W., Meng, Y., Cao, Y., & Li, R. (2020). LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 393–407. https://doi.org/10.1080/21691401.2019.1709852

    Article  CAS  PubMed  Google Scholar 

  20. Gong, D., Feng, P., Ke, X., Kuang, H., Pan, L., Ye, Q., & Wu, J.-B. (2020). Silencing long non-coding RNA LINC01224 inhibits hepatocellular carcinoma progression via microRNA-330–5p-induced inhibition of CHEK1. Molecular Therapy—Nucleic Acids, 19, 482–497. https://doi.org/10.1016/j.omtn.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  21. Xing, S., Zhang, Y., & Zhang, J. (2020). LINC01224 exhibits cancer-promoting activity in epithelial ovarian cancer through microRNA-485–5p-mediated PAK4 upregulation. OncoTargets and Therapy, 13, 5643–5655. https://doi.org/10.2147/ott.S254662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, H., Gao, C., Liu, L., Zhuang, J., Yang, J., Liu, C., Zhou, C., Feng, F., & Sun, C. (2019). 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: based on cox regression and co-expression analysis. Frontiers in Oncology, 9, 1348. https://doi.org/10.3389/fonc.2019.01348

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(5), D92-97. https://doi.org/10.1093/nar/gkt1248

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal, V., Bell, G., Nam, J., & Bartel, D. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y., & Wang, X. (2020). miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Research, 48, D127–D131. https://doi.org/10.1093/nar/gkz757

    Article  CAS  PubMed  Google Scholar 

  26. Chou, C., Shrestha, S., Yang, C., Chang, N., Lin, Y., Liao, K., Huang, W., Sun, T., Tu, S., Lee, W., Chiew, M., Tai, C., Wei, T., Tsai, T., Huang, H., Wang, C., Wu, H., Ho, S., Chen, P., … Huang, H. (2018). miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Research, 46, D296–D302. https://doi.org/10.1093/nar/gkx1067

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J., Piao, H. L., Kim, B. J., Yao, F., Han, Z., Wang, Y., Xiao, Z., Siverly, A. N., Lawhon, S. E., Ton, B. N., Lee, H., Zhou, Z., Gan, B., Nakagawa, S., Ellis, M. J., Liang, H., Hung, M. C., You, M. J., Sun, Y., & Ma, L. (2018). Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nature genetics, 50(12), 1705–1715. https://doi.org/10.1038/s41588-018-0252-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jhan, J. R., & Andrechek, E. R. (2017). Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 18(17), 1595–1609. https://doi.org/10.2217/pgs-2017-0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang, L., Guo, R., Yuan, Z., Shi, H., & Zhang, D. (2018). LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cellular Physiology and Biochemistry, 49(4), 1289–1303. https://doi.org/10.1159/000493408

    Article  CAS  PubMed  Google Scholar 

  30. Jiao, H., Jiang, S., Wang, H., Li, Y., & Zhang, W. (2018). Upregulation of LINC00963 facilitates melanoma progression through miR-608/NACC1 pathway and predicts poor prognosis. Biochemical and Biophysical Research Communications, 504(1), 34–39. https://doi.org/10.1016/j.bbrc.2018.08.115

    Article  CAS  PubMed  Google Scholar 

  31. Gong, X., Dong, T., Niu, M., Liang, X., Sun, S., Zhang, Y., Li, Y., & Li, D. (2020). lncRNA LCPAT1 upregulation promotes breast cancer progression via enhancing MFAP2 transcription. Molecular Therapy—Nucleic Acids, 21, 804–813. https://doi.org/10.1016/j.omtn.2020.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, J., Li, Q., Li, D., Shen, Z., Zhang, K., Bi, Z., & Li, Y. (2020). Long non-coding RNA MNX1-AS1 promotes progression of triple negative breast cancer by enhancing phosphorylation of Stat3. Frontiers in Oncology, 10, 1108. https://doi.org/10.3389/fonc.2020.01108

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, Y., Ma, H., Hu, X., Qu, Y., Wen, X., Zhang, Y., & Xu, Q. J. (2020). LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell International, 20, 200. https://doi.org/10.1186/s12935-020-01261-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X., Hou, L., Yin, L., & Zhao, S. (2020). LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. Journal of Biosciences, 45(1), 1–11.

    Article  Google Scholar 

  35. Sharma, U., Barwal, T. S., Khandelwal, A., Malhotra, A., Rana, M. K., Singh Rana, A. P., Imyanitov, E. N., Vasquez, K. M., & Jain, A. (2021). LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3. Biochimie, 182, 99–107. https://doi.org/10.1016/j.biochi.2020.12.026

    Article  CAS  PubMed  Google Scholar 

  36. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  37. Guo, J., Li, M., Meng, X., Sui, J., Dou, L., Tang, W., Huang, X., Man, Y., Wang, S., & Li, J. (2014). MiR-291b-3p induces apoptosis in liver cell line NCTC1469 by reducing the level of RNA-binding protein HuR. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 33(3), 810–822. https://doi.org/10.1159/000358654

    Article  CAS  PubMed  Google Scholar 

  38. Liang, B., Yin, J. J., & Zhan, X. R. (2015). MiR-301a promotes cell proliferation by directly targeting TIMP2 in multiple myeloma. International Journal of Clinical and Experimental Pathology, 8(8), 9168–9174.

    PubMed  PubMed Central  Google Scholar 

  39. Antoniou, A., Mastroyiannopoulos, N. P., Uney, J. B., & Phylactou, L. A. (2014). miR-186 inhibits muscle cell differentiation through myogenin regulation. The Journal of biological chemistry, 289(7), 3923–3935. https://doi.org/10.1074/jbc.M113.507343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. (2011). A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 146(3), 353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, W., Zhang, B., Jia, Y., Shi, H., Wang, H., Guo, Q., & Li, H. (2020). LncRNA LOXL1-AS1 regulates the tumorigenesis and development of lung adenocarcinoma through sponging miR-423-5p and targeting MYBL2. Cancer Medicine, 9(2), 689–699. https://doi.org/10.1002/cam4.2641

    Article  CAS  PubMed  Google Scholar 

  42. Fang, X., Zhang, J., Li, C., Liu, J., Shi, Z., & Zhou, P. (2020). Long non-coding RNA SNHG22 facilitates the malignant phenotypes in triple-negative breast cancer via sponging miR-324–3p and upregulating SUDS3. Cancer Cell International, 20, 252. https://doi.org/10.1186/s12935-020-01321-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai, Y., Long, J., Liu, Z., Lin, J., Huang, H., Wang, D., Yang, X., Miao, F., Mao, Y., Sang, X., & Zhao, H. (2019). Comprehensive analysis of a ceRNA network reveals potential prognostic cytoplasmic lncRNAs involved in HCC progression. Journal of cellular physiology, 234(10), 18837–18848. https://doi.org/10.1002/jcp.28522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S., Diao, Y., & Zhu, B. J. N. (2020). MiR-193a-5p suppresses cell proliferation and induces cell apoptosis by regulating HOXA7 in human ovarian cancer. Neoplasma, 67(4), 825–833. https://doi.org/10.4149/neo_2020_190730N687

    Article  CAS  PubMed  Google Scholar 

  45. Ding, Y., Li, X., Zhang, Y., & Zhang, J. (2020). Long non-coding RNA cancer susceptibility 9 (CASC9) up-regulates the expression of ERBB2 by inhibiting miR-193a-5p in colorectal cancer. Cancer Management and Research, 12, 1281–1292. https://doi.org/10.2147/cmar.S234620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, J., Xu, J., & Zheng, J. (2019). Long non-coding RNA TTN-AS1 promotes cell proliferation and inhibits cell apoptosis in prostatic cancer by sponging miR-193a-5p. European Review Medical Pharmacological Sciences, 23(18), 7816–7825. https://doi.org/10.26355/eurrev_201909_18991

    Article  Google Scholar 

  47. Sun, H., Yan, J., Tian, G., Chen, X., & Song, W. (2021). LINC01224 accelerates malignant transformation via MiR-193a-5p/CDK8 axis in gastric cancer. Cancer Medicine, 10(4), 1377–1393. https://doi.org/10.1002/cam4.3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cui, Y., Zheng, Y., Lu, Y., Zhang, M., Yang, L., & Li, W. (2022). LINC01224 facilitates the proliferation and inhibits the radiosensitivity of melanoma cells through the miR-193a-5p/NR1D2 axis. The Kaohsiung Journal of Medical Sciences, 38(3), 196–206. https://doi.org/10.1002/kjm2.12467

    Article  CAS  PubMed  Google Scholar 

  49. Gu, Q., Hou, W., Liu, H., Shi, L., Zhu, Z., Ye, W., & Ni, X. (2020). NUP210 and microRNA-22 modulate Fas to Elicit Hela cell cycle arrest. Yonsei Medical Journal, 61(5), 371–381. https://doi.org/10.3349/ymj.2020.61.5.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kikutake, C., & Yahara, K. (2016). Identification of epigenetic biomarkers of lung adenocarcinoma through multi-omics data analysis. PLOS ONE, 11(4), e0152918. https://doi.org/10.1371/journal.pone.0152918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amin, R., Shukla, A., Zhu, J. J., Kim, S., Wang, P., Tian, S. Z., Tran, A. D., Paul, D., Cappell, S. D., Burkett, S., Liu, H., Lee, M. P., Kruhlak, M. J., Dwyer, J. E., Simpson, R. M., Hager, G. L., Ruan, Y., & Hunter, K. W. (2021). Nuclear pore protein NUP210 depletion suppresses metastasis through heterochromatin-mediated disruption of tumor cell mechanical response. Nature Communications, 12(1), 7216. https://doi.org/10.1038/s41467-021-27451-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, N. Q., Stingl, C., Look, M. P., Smid, M., Braakman, R. B., De Marchi, T., Sieuwerts, A. M., Span, P. N., Sweep, F. C., Linderholm, B. K., Mangia, A., Paradiso, A., Dirix, L. Y., Van Laere, S. J., Luider, T. M., Martens, J. W., Foekens, J. A., & Umar, A. (2014). Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer. Journal of the National Cancer Institute, 106(2), djt376. https://doi.org/10.1093/jnci/djt376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by Jiangsu Taizhou People's Hospital 2019 Hospital-level Scientific Research Fund Project (No. ZL201917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yu.

Ethics declarations

Conflict of interest

The authors declare that no competing interests was involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, K., Yi, T., Pan, C. et al. Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol Biotechnol 65, 624–636 (2023). https://doi.org/10.1007/s12033-022-00555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00555-4

Keywords

Navigation