Skip to main content
Log in

RHAU Peptides Specific for Parallel G-Quadruplexes: Potential Applications in Chemical Biology

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

G-quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich sequences, which are ubiquitously found in the human genome and transcriptome. Targeting G4s by specific ligands provides a powerful tool to monitor and regulate G4s-associated biological processes. RHAU peptides, derived from the G4-binding motif of “RNA Helicase associated with AU-rich element” (RHAU), have emerged as extraordinary ligands for specific recognition of parallel G4s. This review highlights the significances of recent studies investigating potential applications of the engineered RHAU peptides incorporated to different functional moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sen, D., & Gilbert, W. (1988). Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334, 364–366.

    Article  CAS  PubMed  Google Scholar 

  2. Phan, A. T., Kuryavyi, V., & Patel, D. J. (2006). DNA architecture: From G to Z. Current Opinion in Structural Biology, 16, 288–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phan, A. T. (2010). Human telomeric G-quadruplex: Structures of DNA and RNA sequences. FEBS Journal, 277, 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, Y., & Brosh, R. M. (2010). G-quadruplex nucleic acids and human disease. FEBS Journal, 277, 3470–3488.

    Article  CAS  PubMed  Google Scholar 

  5. Rhodes, D., & Lipps, H. J. (2015). G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research, 43, 8627–8637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varshney, D., Spiegel, J., Zyner, K., Tannahill, D., & Balasubramanian, S. (2020). The regulation and functions of DNA and RNA G-quadruplexes. Nature Reviews Molecular Cell Biology, 21, 459–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huppert, J. L., & Balasubramanian, S. (2005). Prevalence of quadruplexes in the human genome. Nucleic Acids Research, 33, 2908–2916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balasubramanian, S., & Neidle, S. (2009). G-quadruplex nucleic acids as therapeutic targets. Current Opinion in Chemical Biology, 13, 345–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neidle, S. (2017). Quadruplex nucleic acids as targets for anticancer therapeutics. Nature Reviews Chemistry, 1, 1–10.

    Article  Google Scholar 

  10. Sun, Z.-Y., Wang, X.-N., Cheng, S.-Q., Su, X.-X., & Ou, T.-M. (2019). Developing novel G-quadruplex ligands: From interaction with nucleic acids to interfering with nucleic acid-protein interaction. Molecules, 24, 396.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Monchaud, D., & Teulade-Fichou, M.-P. (2008). A hitchhiker’s guide to G-quadruplex ligands. Organic & Biomolecular Chemistry, 6, 627–636.

    Article  CAS  Google Scholar 

  12. Zhang, Y., Park, K.-Y., Suazo, K. F., & Distefano, M. D. (2018). Recent progress in enzymatic protein labelling techniques and their applications. Chemical Society Reviews, 47, 9106–9136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McRae, E. K. S., Booy, E. P., Padilla-Meier, G. P., & McKenna, S. A. (2017). On characterizing the interactions between proteins and guanine quadruplex structures of nucleic acids. Journal of Nucleic Acids, 2017, e9675348.

    Article  Google Scholar 

  14. Leader, B., Baca, Q. J., & Golan, D. E. (2008). Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 7, 21–39.

    Article  CAS  PubMed  Google Scholar 

  15. Usui, K., & Okada, A. (2014). Chemical biology of nucleic acid: Fundamentals and clinical applications (1st Ed., pp. 459–475). Springer

  16. Avino, A., Fabrega, C., Tintore, M., & Eritja, R. (2012). Thrombin binding aptamer, more than a simple aptamer: Chemically modified derivatives and biomedical applications. Current Pharmaceutical Design, 18, 2036–2047.

    Article  CAS  PubMed  Google Scholar 

  17. Phan, A. T., Kuryavyi, V., Darnell, J. C., Serganov, A., Majumdar, A., Ilin, S., Raslin, T., Polonskaia, A., Chen, C., Clain, D., Darnell, R. B., & Patel, D. J. (2011). Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nature Structural & Molecular Biology, 18, 796–804.

    Article  CAS  Google Scholar 

  18. Xiao, J., Carter, J. A., Frederick, K. A., & McGown, L. B. (2009). A genome-inspired DNA ligand for affinity capture of insulin and insulin-like growth factor-2. Journal of Separation Science, 32, 1654–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Connor, A. C., Frederick, K. A., Morgan, E. J., & McGown, L. B. (2006). Insulin capture by an insulin-linked polymorphic region G-quadruplex DNA oligonucleotide. Journal of the American Chemical Society, 128, 4986–4991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier, M., Patel, T. R., Booy, E. P., Marushchak, O., Okun, N., Deo, S., Howard, R., McEleney, K., Harding, S. E., Stetefeld, J., & McKenna, S. A. (2013). Binding of G-quadruplexes to the N-terminal recognition domain of the RNA helicase associated with AU-rich element (RHAU). Journal of Biological Chemistry, 288, 35014–35027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gueddouda, N. M., Mendoza, O., Gomez, D., Bourdoncle, A., & Mergny, J.-L. (2017). G-quadruplexes unfolding by RHAU helicase. Biochimica et Biophysica Acta—General Subjects, 1861, 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  22. Heddi, B., Cheong, V. V., Martadinata, H., & Phan, A. T. (2015). Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide–quadruplex complex. Proceedings of National Academy of Sciences United States of America, 112, 9608–9613.

    Article  CAS  Google Scholar 

  23. Chalupníková, K., Lattmann, S., Selak, N., Iwamoto, F., Fujiki, Y., & Nagamine, Y. (2008). Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. Journal of Biological Chemistry, 283, 35186–35198.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lai, J. C., Ponti, S., Pan, D., Kohler, H., Skoda, R. C., Matthias, P., & Nagamine, Y. (2012). The DEAH-box helicase RHAU is an essential gene and critical for mouse hematopoiesis. Blood, 119, 4291–4300.

    Article  CAS  PubMed  Google Scholar 

  25. Booy, E. P., Howard, R., Marushchak, O., Ariyo, E. O., Meier, M., Novakowski, S. K., Deo, S. R., Dzananovic, E., Stetefeld, J., & McKenna, S. A. (2014). The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1. Nucleic Acids Research, 42, 3346.

    Article  CAS  PubMed  Google Scholar 

  26. Lattmann, S., Giri, B., Vaughn, J. P., Akman, S. A., & Nagamine, Y. (2010). Role of the amino terminal RHAU-specific motif in the recognition and resolution of guanine quadruplex-RNA by the DEAH-box RNA helicase RHAU. Nucleic Acids Research, 38, 6219–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lattmann, S., Stadler, M. B., Vaughn, J. P., Akman, S. A., & Nagamine, Y. (2011). The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Research, 39, 9390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Booy, E. P., Meier, M., Okun, N., Novakowski, S. K., Xiong, S., Stetefeld, J., & McKenna, S. A. (2012). The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Research, 40, 4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heddi, B., Cheong, V. V., Schmitt, E., Mechulam, Y., & Phan, A. T. (2020). Recognition of different base tetrads by RHAU (DHX36): X-ray crystal structure of the G4 recognition motif bound to the 3′-end tetrad of a DNA G-quadruplex. Journal of Structural Biology, 209, 107399.

    Article  CAS  PubMed  Google Scholar 

  30. Dang, D. T., & Phan, A. T. (2016). Development of fluorescent protein probes specific for parallel DNA and RNA G-quadruplexes. ChemBioChem, 17, 42–45.

    Article  CAS  PubMed  Google Scholar 

  31. Ngo, K. H., Yang, R., Das, P., Nguyen, G. K. T., Lim, K. W., Tam, J. P., Wu, B., & Phan, A. T. (2020). Cyclization of a G4-specific peptide enhances its stability and G-quadruplex binding affinity. Chemical Communications, 56, 1082–1084.

    Article  CAS  PubMed  Google Scholar 

  32. Dang, D. T., Nguyen, L. T. A., Truong, T. T. T., Nguyen, H. D., & Phan, A. T. (2021). Construction of a G-quadruplex-specific DNA endonuclease. Chemical Communications, 57, 4568–4571.

    Article  CAS  PubMed  Google Scholar 

  33. Li, C., Wang, H., Yin, Z., Fang, P., Xiao, R., Xiang, Y., Wang, W., Li, Q., Huang, B., Huang, J., & Liang, K. (2021). Ligand-induced native G-quadruplex stabilization impairs transcription initiation. Genome Research, 31, 1546–1560.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Awadasseid, A., Ma, X., Wu, Y., & Zhang, W. (2021). G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomedicine & Pharmacotherapy, 139, 111550.

    Article  CAS  Google Scholar 

  35. Arola, A., & Vilar, R. (2008). Stabilisation of G-quadruplex DNA by small molecules. Current Topics in Medicinal Chemistry, 8, 1405–1415.

    Article  CAS  PubMed  Google Scholar 

  36. Tao, Y., Zheng, Y., Zhai, Q., & Wei, D. (2021). Recent advances in the development of small molecules targeting RNA G-quadruplexes for drug discovery. Bioorganic Chemistry, 110, 104804.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, B.-J., Wu, Y.-L., Tanaka, Y., & Zhang, W. (2014). Small molecules targeting c-Myc oncogene: Promising anti-cancer therapeutics. International Journal of Biological Sciences, 10, 1084–1096.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, T.-Y., Huang, Q., Huang, Z.-S., Hu, M.-H., & Tan, J.-H. (2020). A drug-like imidazole-benzothiazole conjugate inhibits malignant melanoma by stabilizing the c-MYC G-quadruplex. Bioorganic Chemistry, 99, 103866.

    Article  CAS  PubMed  Google Scholar 

  39. Dutta, D., Debnath, M., Müller, D., Paul, R., Das, T., Bessi, I., Schwalbe, H., & Dash, J. (2018). Cell penetrating thiazole peptides inhibit c-MYC expression via site-specific targeting of c-MYC G-quadruplex. Nucleic Acids Research, 46, 5355–5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sengupta, P., Banerjee, N., Roychowdhury, T., Dutta, A., Chattopadhyay, S., & Chatterjee, S. (2018). Site-specific amino acid substitution in dodecameric peptides determines the stability and unfolding of c-MYC quadruplex promoting apoptosis in cancer cells. Nucleic Acids Research, 46, 9932–9950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marzano, M., Falanga, A. P., Marasco, D., Borbone, N., D’Errico, S., Piccialli, G., Roviello, G. N., & Oliviero, G. (2020). Evaluation of an analogue of the marine ε-PLL peptide as a ligand of G-quadruplex DNA structures. Marine Drugs, 18, E49.

    Article  Google Scholar 

  42. Yaneva, M. Y., Cheong, V. V., Cheng, J. K., Lim, K. W., & Phan, A. T. (2020). Stapling a G-quadruplex specific peptide. Biochemical and Biophysical Research Communications, 531, 62–66.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, K., Zhang, J., He, Y., Gong, J., Wen, C., Chen, J., Hao, Y., Zhao, Y., & Tan, Z. (2020). Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Research, 48, 11706–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Antonio, M., Ponjavic, A., Radzevičius, A., Ranasinghe, R. T., Catalano, M., Zhang, X., Shen, J., Needham, L.-M., Lee, S. F., Klenerman, D., & Balasubramanian, S. (2020). Single-molecule visualization of DNA G-quadruplex formation in live cells. Nature Chemistry, 12, 832–837.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Breaker, R. R., & Joyce, G. F. (2014). The expanding view of RNA and DNA function. Chemistry & Biology, 21, 1059–1065.

    Article  CAS  Google Scholar 

  46. Storz, G. (2002). An expanding universe of noncoding RNAs. Science, 296, 1260–1263.

    Article  CAS  PubMed  Google Scholar 

  47. Cooper, T. A., Wan, L., & Dreyfuss, G. (2009). RNA and disease. Cell, 136, 777–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hélène, C., Thuong, N. T., Saison-Behmoaras, T., & François, J.-C. (1989). Sequence-specific artificial endonucleases. Trends in Biotechnology, 7, 310–315.

    Article  Google Scholar 

  49. Tanner, N. K. (1999). Ribozymes: The characteristics and properties of catalytic RNAs. FEMS Microbiology Reviews, 23, 257–275.

    Article  CAS  PubMed  Google Scholar 

  50. Walter, N. G., & Engelke, D. R. (2002). Ribozymes: Catalytic RNAs that cut things, make things, and do odd and useful jobs. Biologist (London, England), 49, 199–203.

    PubMed  Google Scholar 

  51. Achenbach, J. C., Chiuman, W., Cruz, R. P. G., & Li, Y. (2004). DNAzymes: From creation in vitro to application in vivo. Current Pharmaceutical Biotechnology, 5, 321–336.

    Article  CAS  PubMed  Google Scholar 

  52. Morrison, D., Rothenbroker, M., & Li, Y. (2018). DNAzymes: Selected for applications. Small Methods., 2, 1700319.

    Article  Google Scholar 

  53. Wang, Y., Nguyen, K., Spitale, R. C., & Chaput, J. C. (2021). A biologically stable DNAzyme that efficiently silences gene expression in cells. Nature Chemistry, 13, 319–326.

    Article  CAS  PubMed  Google Scholar 

  54. Sulej, A. A., Tuszynska, I., Skowronek, K. J., Nowotny, M., & Bujnicki, J. M. (2012). Sequence-specific cleavage of the RNA strand in DNA-RNA hybrids by the fusion of ribonuclease H with a zinc finger. Nucleic Acids Research, 40, 11563–11570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walton, C. M., Wu, C. H., & Wu, G. Y. (2001). A ribonuclease H-oligo DNA conjugate that specifically cleaves hepatitis B viral messenger RNA. Bioconjugate Chemistry, 12, 770–775.

    Article  CAS  PubMed  Google Scholar 

  56. Dang, D. T., & Phan, A. T. (2019). Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage. Science and Reports, 9, 7432.

    Article  Google Scholar 

  57. Marianayagam, N. J., Sunde, M., & Matthews, J. M. (2004). The power of two: Protein dimerization in biology. Trends in Biochemical Sciences, 29, 618–625.

    Article  CAS  PubMed  Google Scholar 

  58. Kou, H., & Pugh, B. F. (2004). Engineering dimer-stabilizing mutations in the TATA-binding protein. Journal of Biological Chemistry, 279, 20966–20973.

    Article  CAS  PubMed  Google Scholar 

  59. Jbara, M., Pomplun, S., Schissel, C. K., Hawken, S. W., Boija, A., Klein, I., Rodriguez, J., Buchwald, S. L., & Pentelute, B. L. (2021). Engineering bioactive dimeric transcription factor analogs via palladium rebound reagents. Journal of the American Chemical Society, 143, 11788–11798.

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, H. D., Dang, D. T., van Dongen, J. L. J., & Brunsveld, L. (2010). Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angewandte Chemie International Edition, 49, 895–898.

    Article  CAS  PubMed  Google Scholar 

  61. Dang, D. T., Schill, J., & Brunsveld, L. (2012). Cucurbit[8]uril-mediated protein homotetramerization. Chemical Science, 3, 2679–2684.

    Article  CAS  Google Scholar 

  62. Dang, D. T., Nguyen, H. D., Merkx, M., & Brunsveld, L. (2013). Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angewandte Chemie (International ed. in English), 52, 2915–2919.

    Article  CAS  PubMed  Google Scholar 

  63. Truong, T. T. T., Cao, C., & Thanh Dang, D. (2020). Parallel G-quadruplex-mediated protein dimerization and activation. RSC Advances, 10, 29957–29960.

    Article  Google Scholar 

  64. Forsha, S. J., Panyutin, I. V., Neumann, R. D., & Panyutin, I. G. (2010). Intracellular traffic of oligodeoxynucleotides in and out of the nucleus: Effect of exportins and DNA structure. Oligonucleotides, 20, 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery, 20, 122–128.

    CAS  Google Scholar 

  66. Dingermann, T. (2008). Recombinant therapeutic proteins: Production platforms and challenges. Biotechnology Journal, 3, 90–97.

    Article  CAS  PubMed  Google Scholar 

  67. Chen, X., Zaro, J., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65, 1357–1369.

    Article  CAS  PubMed  Google Scholar 

  68. Lagassé, H. A. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W., Sauna, Z. E., & Kimchi-Sarfaty, C. (2017). Recent advances in (therapeutic protein) drug development. F1000Res, 6, 113.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Anh Tuân Phan (Nanyang Technological University, Singapore) for scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dung Thanh Dang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T.A., Dang, D.T. RHAU Peptides Specific for Parallel G-Quadruplexes: Potential Applications in Chemical Biology. Mol Biotechnol 65, 291–299 (2023). https://doi.org/10.1007/s12033-022-00552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00552-7

Keywords

Navigation