Skip to main content

Advertisement

Log in

Biosynthesis of Odd-Carbon Unsaturated Fatty Dicarboxylic Acids Through Engineering the HSAF Biosynthetic Gene in Lysobacter enzymogenes

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fatty dicarboxylic acids (FDCA) are useful as starting materials or components for plastics, polyesters, nylons, and fragrances. Most of the commercially available FDCA contain an even number of carbons, and there remain few sustainable methods for production of FDCA with an odd number of carbons (o-FDCA). In this work, we explored a novel biosynthetic route to unsaturated o-FDCA. The approach was based on genetic modifications of hsaf pks-nrps, encoding a hybrid polyketide synthase–nonribosomal peptide synthetase (PKS–NRPS) in Lysobacter enzymogenes, an environmental bacterium emerging as a new biocontrol agent. This single-module PKS–NRPS catalyzes the biosynthesis of lysobacterene A, a polyene-containing precursor of the antifungal natural product Heat-Stable Antifungal Factor (HSAF). We genetically removed the NRPS module from this gene and generated a new strain of L. enzymogenes, in which the PKS module was fused to the thioesterase domain of hsaf pks–nrps. The chimeric gene was verified by DNA sequencing, and its expression in L. enzymogenes was confirmed by reverse transcription-polymerase chain reaction (RT-PCR). The total fatty acids were extracted, esterified, and analyzed by GC–MS. The results showed that the engineered strain produced new fatty acids that were absent in the wild type. The main product was identified as hepta-2,4-dienedioic acid, an unsaturated o-FDCA. This work sets the foundation to explore a sustainable and environment-friendly approach toward unsaturated o-FDCA, which could be used as precursors for new compounds that can serve as versatile feedstock for industrial materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stempfle, F., Ortmann, P., & Mecking, S. (2016). Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chemical Reviews, 116, 4597–4641.

    Article  CAS  Google Scholar 

  2. Kroha, K. J. (2004). Industrial biotechnology provides opportunities for commercial production of new long-chain dibasic acids. Inform, 15, 568–571.

    Google Scholar 

  3. Barbiroli, G., Lorenzetti, C., Berti, C., Fiorini, M., & Manaresi, P. (2003). Polyethylene like polymers. Aliphatic polyesters of dodecanedioic acid: 1 Synthesis and properties. European Polymer Journal, 39, 655–661.

    Article  CAS  Google Scholar 

  4. Huf, S., Krügener, S., Hirth, T., Rupp, S., & Zibek, S. (2011). Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers. European Journal of Lipid Science and Technology, 113, 548–561.

    Article  CAS  Google Scholar 

  5. Ferreira, B., Pais, C., Franco-Duarte, R., Sampaio, P., Wildner, J., Carolas, A. and Figueira, D. (2016). Production of dicarboxylic acid platform chemicals using yeasts: focus on succinic acid, in Biotransformation of Agricultural Waste and By-Products, pp. 237–269.

  6. Niu, W., Draths, K. M., & Frost, J. W. (2002). Benzene-free synthesis of adipic acid. Biotechnology Progress, 18, 201–211.

    Article  CAS  Google Scholar 

  7. Yu, J. L., Xia, X. X., Zhong, J. J., & Qian, Z. G. (2014). Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnology and Bioengineering, 111, 2580–2586.

    Article  CAS  Google Scholar 

  8. Beardslee, T., & Picataggio, S. (2012). Bio-based adipic acid from renewable oils. Lipid Technology, 24, 223–225.

    Article  CAS  Google Scholar 

  9. Hagen, A., Poust, S., Rond, T. D., Fortman, J. L., Katz, L., Petzold, C. J., & Keasling, J. D. (2016). Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synthetic Biology, 5, 21–27.

    Article  CAS  Google Scholar 

  10. Zhao, M., Huang, D., Zhang, X., Koffas, M. A. G., Zhou, J., & Deng, Y. (2018). Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 47, 254–262.

    Article  CAS  Google Scholar 

  11. Clomburg, J. M., Blankschien, M. D., Vick, J. E., Chou, A., Kim, S., & Gonzalez, R. (2015). Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metabolic Engineering, 28, 202–212.

    Article  CAS  Google Scholar 

  12. Turk, S. C. H. J., Kloosterman, W. P., Ninaber, D. K., Kolen, K. P. A. M., Knutova, J., Suir, E., Schürmann, M., Raemakers-Franken, P. C., Müller, M., de Wildeman, S. M. A., Raamsdonk, L. M., van der Pol, R., Wu, L., Temudo, M. F., van der Hoeven, R. A. M., Akeroyd, M., van der Stoel, R. E., Noorman, H. J., Bovenberg, R. A. L., & Trefzer, A. C. (2016). Metabolic engineering toward sustainable production of nylon-6. ACS Synthetic Biology, 5, 65–73.

    Article  CAS  Google Scholar 

  13. Raj, K., Partow, S., Correia, K., Khusnutdinova, A. N., Yakunin, A. F., & Mahadevan, R. (2018). Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metabolic Engineering Communications, 6, 28–32.

    Article  Google Scholar 

  14. Lee, S. J., Song, H., & Lee, S. Y. (2006). Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Applied and Environmental Microbiology, 72, 1939–1948.

    Article  CAS  Google Scholar 

  15. Takeuchi, M., Kishino, S., Park, S. B., Kitamura, N., Watanabe, H., Saika, A., Hibi, M., Yokozeki, K., & Ogawa, J. (2016). Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage. Bioscience, Biotechnology, and Biochemistry, 80, 2132–2137.

    Article  CAS  Google Scholar 

  16. Liu, R. H., Smith, M. K., Basta, S. A., & Farmer, E. R. (2006). Azelaic acid in the treatment of papulopustular rosacea: A systematic review of randomized controlled trials. Archives of Dermatology, 142, 1047–1052.

    Article  CAS  Google Scholar 

  17. Pathak, M. A., Ciganek, E. R., Wick, M., Sober, A. J., Farinelli, W. A., & Fitzpatrick, T. B. (1985). An evaluation of the effectiveness of azelaic acid as a depigmenting and chemotherapeutic agent. The Journal of Investigative Dermatology, 85, 222–228.

    Article  CAS  Google Scholar 

  18. Haushalter, R. W., Phelan, R. M., Hoh, K. M., Su, C., Wang, G., Baidoo, E. E. K., & Keasling, J. D. (2017). Production of odd-carbon dicarboxylic acids in Escherichia coli using an engineered biotin–fatty acid biosynthetic pathway. Journal of the American Chemical Society, 139, 4615–4618.

    Article  CAS  Google Scholar 

  19. Lee, Y., Sathesh-Prabu, C., Kwak, G. H., Bang, I., Jung, H. W., Kim, D., & Lee, S. K. (2021). Enhanced production of nonanedioic acid from nonanoic acid by engineered Escherichia coli. Biotechnology Journal. https://doi.org/10.1002/biot.202000416

    Article  PubMed  Google Scholar 

  20. Khalil, I., Quintens, G., Junkers, T., & Dusselier, M. (2020). Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chemistry, 22, 1517–1541.

    Article  CAS  Google Scholar 

  21. Xie, Y., Wright, S., Shen, Y., & Du, L. (2012). Bioactive natural products from Lysobacter. Natural Product Reports, 29, 1277–1287.

    Article  CAS  Google Scholar 

  22. Yue, H., Miller, A. L., Khetrapal, V., Jayaseker, V., Wright, S., & Du, L. (2022). Biosynthesis, regulation, and engineering of natural products from Lysobacter. Natural Product Reports, 39, 842–874.

    Article  CAS  Google Scholar 

  23. Yu, F., Zaleta-Rivera, K., Zhu, X., Huffman, J., Millet, J. C., Harris, S. D., Yuen, G., Li, X.-C., & Du, L. (2007). Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrobial Agents and Chemotherapy, 51, 64–72.

    Article  CAS  Google Scholar 

  24. Li, Y., Chen, H., Ding, Y., Xie, Y., Wang, H., Cerny, R. L., Shen, Y., & Du, L. (2014). Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of hsaf. Angewandte Chemie International Edition, 53, 7524–7530.

    Article  CAS  Google Scholar 

  25. Lou, L., Qian, G., Xie, Y., Hang, J., Chen, H., Zaleta-Rivera, K., Li, Y., Shen, Y., Dussault, P. H., Liu, F.-Q., & Du, L. (2011). Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. Journal of the American Chemical Society, 133(4), 643–645.

    Article  CAS  Google Scholar 

  26. Li, Y., Wang, H., Liu, Y., Jiao, Y., Li, S., Shen, Y., & Du, L. (2018). Biosynthesis of the polycyclic system in the antifungal hsaf and analogues from Lysobacter enzymogenes. Angewandte Chemie International Edition, 57, 6221–6225.

    Article  CAS  Google Scholar 

  27. Quandt, J., & Hynes, M. F. (1993). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene, 127, 15–21.

    Article  CAS  Google Scholar 

  28. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J., & Schweizer, H. P. (1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene, 212, 77–86.

    Article  CAS  Google Scholar 

  29. Heckman, K. L., & Pease, L. R. (2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nature Protocols, 2, 924–932.

    Article  CAS  Google Scholar 

  30. Liu, G., Tian, Y., Yang, H., & Tan, H. (2005). A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Molecular Microbiology, 55, 1855–1866.

    Article  CAS  Google Scholar 

  31. Politz, M., Lennen, R., & Pfleger, B. (2013). Quantification of bacterial fatty acids by extraction and methylation. Bio Protocol, 3, e950.

    Article  Google Scholar 

  32. McLafferty, F. W., & Turecek, F. (1994). Interpretation of mass spectra (4th ed.). University Science Books.

    Google Scholar 

  33. Hallgren, B., Ryhage, R., & Stenhagen, E. (1959). The mass spectra of methyl oleate, methyl linoleate, and methyl linolenate. Acta Chemica Scandinavica, 13, 845–847.

    Article  CAS  Google Scholar 

  34. Christie, W. W., & Han, X. (2012). Gas chromatographic analysis of fatty acid derivatives. In W. W. Christie & X. Han (Eds.), Lipid analysis (pp. 159–180). Woodhead Publishing.

    Chapter  Google Scholar 

  35. Becker, J., Zelder, O., Hafner, S., Schroder, H., & Wittmann, C. (2011). From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 13, 159–168.

    Article  CAS  Google Scholar 

  36. Lee, S. J., Lee, D. Y., Kim, T. Y., Kim, B. H., Lee, J., & Lee, S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 71, 7880–7887.

    Article  CAS  Google Scholar 

  37. Bro, C., Regenberg, B., Forster, J., & Nielsen, J. (2006). In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering, 8, 102–111.

    Article  CAS  Google Scholar 

  38. Lamsa, M., & Bloebaum, P. (1990). Mutation and screening to increase chymosin yield in a genetically-engineered strain of Aspergillus awamori. Journal of Industrial Microbiology, 5, 229–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported in part by University of Nebraska Collaboration Initiative Seed Grant, and the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln. The authors would like to thank Drs. Martha Morton, Thomas Smith, and Virendra Tiwari for technical supports in identification of the fatty acids, and Drs. Lingjun Yu and Yuan Chen for assistance in molecular cloning experiments.

Author information

Authors and Affiliations

Authors

Contributions

LD and PHD designed the research. VK performed the experiments. VK, LD, and PHD analyzed data. VK and LD wrote the manuscript. PD edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Liangcheng Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khetrapal, V., Dussault, P. & Du, L. Biosynthesis of Odd-Carbon Unsaturated Fatty Dicarboxylic Acids Through Engineering the HSAF Biosynthetic Gene in Lysobacter enzymogenes. Mol Biotechnol 64, 1401–1408 (2022). https://doi.org/10.1007/s12033-022-00520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00520-1

Keywords

Navigation