Skip to main content

Advertisement

Log in

Novel Salt-Tolerant Leucine Dehydrogenase from Marine Pseudoalteromonas rubra DSM 6842

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study reported the cloning, expression, and characterization of a new salt-tolerant leucine dehydrogenase (PrLeuDH) from Pseudoalteromonas rubra DSM 6842. A codon-optimized 1038 bp gene encoding PrLeuDH was successfully expressed on pET-22b( +) in E. coli BL21(DE3). The purified recombinant PrLeuDH showed a single band of about 38.7 kDa on SDS-PAGE. It exhibited the maximum activity at 40 °C and pH 10.5, while kept high activities in the range of 25–45 °C and pH 9.5–12. The Km value and turnover number kcat for leucine of PrLeuDH were 2.23 ± 0.12 mM and 35.39 ± 0.05 s−1, respectively, resulting in a catalytic efficiency kcat/Km of 15.87 s−1/mM. Importantly, PrLeuDH remained 92.1 ± 2.67% active in the presence of 4.0 M NaCl. The study provides the first in-depth understanding of LeuDH from marine Pseudoalteromonas rubra, meanwhile the unique properties of high activity at low temperature and high salt tolerance make it a promising biocatalyst for the synthesis of non-protein amino acids and α-ketoacids under special conditions in pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4 
Fig. 5 
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polaina, J., & Maccabe, A. P. (2007). Industrial enzymes. Amino Acid Dehydrogenases., 10, 489–504.

    Google Scholar 

  2. Brunhuber, N., & Blanchard, J. S. (1994). The biochemistry and enzymology of amino acid dehydrogenases. Critical Reviews in Biochemistry & Molecular Biology., 29, 415–467.

    Article  CAS  Google Scholar 

  3. Inoue, K., Makino, Y., & Itoh, N. (2005). Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). ChemInform, 16, 2539–2549.

    CAS  Google Scholar 

  4. Sanwal, B. D., & Zink, M. W. (1961). L-Leucine dehydrogenase of Bacillus cereus. Archives of Biochemistry & Biophysics., 94, 430–435.

    Article  CAS  Google Scholar 

  5. Zink, M. W., & Sanwal, B. D. (1962). The distribution and substrate specificity of -leucine dehydrogenase. Archives of Biochemistry & Biophysics., 99, 72–77.

    Article  CAS  Google Scholar 

  6. Zhu, W., Li, Y., Jia, H., Wei, P., Zhou, H., & Jiang, M. (2016). Expression, purification and characterization of a thermostable leucine dehydrogenase from the halophilic thermophile Laceyella sacchari. Biotechnology Letters., 38, 855–861.

    Article  CAS  PubMed  Google Scholar 

  7. Ohshima, T., Nishida, N., Bakthavatsalam, S., Kataoka, K., Takada, H., Yoshimura, T., Esaki, N., & Soda, K. (2010). The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Febs Journal., 222, 305–312.

    Google Scholar 

  8. Nagata, S., Bakthavatsalam, S., & Galkin…, A. (1995). Gene cloning, purification, and characterization of thermostable and halophilic leucine dehydrogenase from a halophilic thermophile, Bacillus licheniformis TSN9. Applied Microbiology and Biotechnology., 44, 432–438.

    Article  CAS  PubMed  Google Scholar 

  9. Reina, K., Shinji, N., Akira, O., & Ohshima, T. (2003). Purification and characterization of leucine dehydrogenase from an alkaliphilic halophile, Natronobacterium magadii MS-3. Journal of Molecular Catalysis B Enzymatic., 23, 231–238.

    Article  Google Scholar 

  10. Xavier, R., & Patrice, G. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320.

    Article  Google Scholar 

  11. Watts, A., Sankaranarayanan, S., Watts, A., & Raipuria, R. K. (2021). Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene., 29, 100899.

    Article  CAS  Google Scholar 

  12. Xie, B. B., Shu, Y. L., Qin, Q. L., Rong, J. C., Zhang, X. Y., Chen, X. L., Zhou, B. C., & Zhang, Y. Z. (2012). Genome sequence of the cycloprodigiosin-producing bacterial strain Pseudoalteromonas rubra ATCC 29570T. Journal of Bacteriology, 194, 1637–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker, P. J., Turnbull, A. P., Sedelnikova, S. E., Stillman, T. J., & Rice, D. W. (1995). A role for quaternary structure in the substrate specificity of leucine dehydrogenase. Structure, 3, 693–705.

    Article  CAS  PubMed  Google Scholar 

  14. Andrew, W., Martino, B., Stefan, B., Gabriel, S., Gerardo, T., Rafal, G., Heer, F. T., de Beer, A. P., Christine, R., & Lorenza, B. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303.

    Article  Google Scholar 

  15. Gabriel, S., Christine, R., Waterhouse, A. M., Rafal, G., Juergen, H., & Torsten, S. (2019). QMEAND is co–distance constraints applied on model quality estimation. Bioinformatics, 36, 1765–1771.

    Google Scholar 

  16. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography., 66, 12–21.

    Article  CAS  PubMed  Google Scholar 

  17. Nakasako, M., Fujisawa, T., Adachi, S., Kudo, T., & Higuchi, S. (2001). Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering. Biochemistry, 40, 3069.

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira, T., Sharkey, M. A., Engel, P. C., & Khan, A. R. (2016). Crystal structure of a chimaeric bacterial glutamate dehydrogenase. Acta Crystallographica Section F: Structural Biology Communications., 72, 462–466.

    CAS  PubMed Central  Google Scholar 

  19. Grzechowiak, M., Sliwiak, J., Ja Skolski, M., & Ruszkowski, M. (2020). Structural studies of glutamate dehydrogenase (Isoform 1) From Arabidopsis thaliana, an important enzyme at the branch-point between carbon and nitrogen metabolism. Frontiers in Plant Science., 11, 1.

    Article  Google Scholar 

  20. Yamaguchi, H., Kamegawa, A., Nakata, K., Kashiwagi, T., Mizukoshi, T., Fujiyoshi, Y., & Tani, K. (2018). Structural insights into thermostabilization of leucine dehydrogenase from its atomic structure by cryo-electron microscopy. Journal of Structural Biology, 205, 11–21.

    Article  PubMed  Google Scholar 

  21. Zhao, Y., Wakamatsu, T., Doi, K., Sakuraba, H., & Ohshima, T. (2013). Studies on enzymatic properties and crystal structure of L-leucine dehydrogenase from a psychrophilic bacterium Sporosarcina psychrophila. Journal of Molecular Catalysis B Enzymatic, 83, 65–72.

    Article  Google Scholar 

  22. Zhao, Y., Wakamatsu, T., Doi, K., Sakuraba, H., & Ohshima, T. (2012). A psychrophilic leucine dehydrogenase from Sporosarcina psychrophila: Purification, characterization, gene sequencing and crystal structure analysis. Journal of Molecular Catalysis B: Enzymatic., 83, 65–72.

    Article  CAS  Google Scholar 

  23. Yamaguchi, H., Kamegawa, A., Nakata, K., Kashiwagi, T., Mizukoshi, T., Fujiyoshi, Y., & Tani, K. (2018). Structural insights into thermostabilization of leucine dehydrogenase from its atomic structure by cryo-electron microscopy. Journal of Structural Biology., 205, 11–21.

    Article  PubMed  Google Scholar 

  24. Mahdizadehdehosta, R., Kianmehr, A., & Khalili, A. (2013). Isolation and characterization of Leucine dehydrogenase from a thermophilic Citrobacter freundii JK-91strain Isolated from Jask Port. Iranian Journal of Microbiology., 5, 278–284.

    PubMed  PubMed Central  Google Scholar 

  25. Jiang, W., Sun, D., Lu, J., Wang, Y., Wang, S., Zhang, Y., & Fang, B. (2016). A cold-adapted leucine dehydrogenase from marine bacterium Alcanivorax dieselolei: Characterization and l-tert-leucine production. Engineering in Life Sciences., 16, 283–289.

    Article  CAS  Google Scholar 

  26. Wang, Y., Hou, Y., Yifan Wang, L., Zheng, X. X., Pan, K., Li, R., & Wang, Q. (2018). A novel cold-adapted leucine dehydrogenase from antarctic sea-ice bacterium Pseudoalteromonas sp. ANT178. Marine Drugs., 16, 359.

    Article  CAS  PubMed Central  Google Scholar 

  27. Lu, J., Zhang, Y., Sun, D., Jiang, W., Wang, S., & Fang, B. (2016). the development of leucine dehydrogenase and formate dehydrogenase bifunctional enzyme cascade improves the biosynthsis of L-tert-leucine. Applied Biochemistry & Biotechnology., 180, 1–16.

    Article  Google Scholar 

  28. Karst, U., Schutte, H., Baydoun, H., & Tsai, H. (1989). Purification and characterization of leucine dehydrogenase from the thermophile “Bacillus caldolyticus.” Microbiology, 16, 210–216.

    Google Scholar 

  29. Oren, A. (2008). Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Systems., 4, 1–13.

    Article  Google Scholar 

  30. Graziano, G., & Merlino, A. (2014). Molecular bases of protein halotolerance. Biochimica et Biophysica Acta—Proteins & Proteomics, 1844, 850–858.

    Article  CAS  Google Scholar 

  31. Kastritis, P. L., Papandreou, N. C., & Hamodrakas, S. J. (2007). Haloadaptation: Insights from comparative modeling studies of halophilic archaeal DHFRs. International Journal of Biological Macromolecules., 41, 447–453.

    Article  CAS  PubMed  Google Scholar 

  32. Pieper, U., Kapadia, G., Mevarech, M., & Herzberg, O. (1998). Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure., 6, 75–88.

    Article  CAS  PubMed  Google Scholar 

  33. Tadeo, X., López-Méndez, B., Trigueros, T., Laín, A., Casta, O. D., Millet, O., & Petsko, G. A. (2009). Structural basis for the aminoacid composition of proteins from halophilic archea. Plos Biology., 7, e1000257.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, F. L., Shi, Y., Zhang, J. X., Gao, J., & Zhang, Y. W. (2018). Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175. International Journal of Biological Macromolecules, 113, 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  35. Galkin, A., Kulakova, L., Ashida, H., Sawa, Y., & Esaki, N. (1999). Cold-adapted alanine dehydrogenases from two Antarctic bacterial strains: Gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts. Applied and Environmental Microbiology., 65, 4014–4020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siglioccolo, A., Gerace, R., & Pascarella, S. (2010). “Cold spots” in protein cold adaptation: Insights from normalized atomic displacement parameters (B′ -factors). Biophysical Chemistry., 153, 104–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi science and technology base and talent special project (No. AD211064) and the Beihai "13th five year plan" marine economic innovation and development demonstration project (No. Bhsfs010-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hua Wang.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1329 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Liao, YT., Gao, TT. et al. Novel Salt-Tolerant Leucine Dehydrogenase from Marine Pseudoalteromonas rubra DSM 6842. Mol Biotechnol 64, 1270–1278 (2022). https://doi.org/10.1007/s12033-022-00505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00505-0

Keywords

Navigation