Skip to main content
Log in

CRISPR/Cas9-Mediated Disruption of ZNF543 Gene: An Approach Toward Discovering Its Relation to TRIM28 Gene in Parkinson’s Disease

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Genetic studies of familial forms of Parkinson’s disease (PD) have shown that the ZNF543 gene is a candidate gene that operates relevant to this disease. However, until now, there is no evidence for ZNF543 gene function in PD, and mechanisms resulting from its mutation have not been elucidated. Given the same genetic location of the ZNF543 gene with TRIM28 and their effects on PD pathogenesis, we surmised that ZNF543 might act as a transcription factor for TRIM28 gene expression. By knocking out the ZNF543 gene via the CRISPR/Cas9 editing platform, we assessed the functional effect of loss of expression of this gene on TRIM28 gene expression. Four sgRNAs with different PAM sequences were designed against two parts of the regulatory region of ZNF543 gene, and highly efficient disruption of ZNF543 expression in human neuroblastoma cell line was evaluated by polymerase chain reaction and T7 endonuclease assay. Moreover, evaluation of TRIM28 gene expression in ZNF543-knocked-out cells indicated a significant increase in TRIM28 gene expression, suggesting that ZNF543 probably regulates the expression of TRIM28. This approach offers a window into pinpointing the mechanism by which ZNF543 gene mutations mediate PD pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data sets generated and analyzed in the current study are available from the corresponding author on reasonable request.

References

  1. Lau, De., Lonneke, M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525–535.

    Article  Google Scholar 

  2. Klemann, C. J. H. M., Martens, G. J. M., Sharma, M., Martens, M. B., Isacson, O., Gasser, T., Visser, J. E., & Poelmans, G. (2017). Integrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Diseases, 3, 1–7.

    Google Scholar 

  3. Bonifati, V. (2014). Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism & Related Disorders, 20, S23–S28.

    Article  Google Scholar 

  4. Sasan, H., Hashemabadi, M., Amandadi, M., & Ravan, H. (2020). Alteration in the expression of Parkinson’s-related genes in rat hippocampus by exercise and morphine treatments. Russian Journal of Genetics (Translation of Genetika (Moscow, Russian Federation)), 56, 502–508.

    CAS  Google Scholar 

  5. Nalls, M. A., Blauwendraat, C., Vallerga, C. L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D. A., Noyce, A. J., & Xue, A. (2019). Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurology, 18, 1091–1102.

    Article  CAS  Google Scholar 

  6. Jansen, I. E., Ye, H., Heetveld, S., Lechler, M. C., Michels, H., Seinstra, R. I., Lubbe, S. J., Drouet, V., Lesage, S., & Majounie, E. (2017). Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biology, 18, 1–26.

    Article  Google Scholar 

  7. Simon-Sanchez, J., Schulte, C., Bras, J. M., Manu Sharma, J., Gibbs, R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S. W., & Hernandez, D. G. (2009). Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics, 41, 1308.

    Article  CAS  Google Scholar 

  8. Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., & Takeda, A. (2009). Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nature Genetics, 41, 1303.

    Article  CAS  Google Scholar 

  9. Saad, M., Lesage, S., Saint-Pierre, A., Corvol, J.-C., Zelenika, D., Lambert, J.-C., Vidailhet, M., Mellick, G. D., Lohmann, E., & Durif, F. (2011). Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Human Molecular Genetics, 20, 615–627.

    Article  Google Scholar 

  10. Rousseaux, Maxime WC., de Haro, Maria, Lasagna-Reeves, Cristian A., De Maio, Antonia, Park, Jeehye, Jafar-Nejad, Paymaan, Al-Ramahi, Ismael, Sharma, Ajay, See, Lauren, & Nan, Lu. (2016). TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. Elife, 5, e19809.

    Article  Google Scholar 

  11. Rousseaux, Maxime WC., Revelli, Jean-Pierre., Vázquez-Vélez, Gabriel E., Kim, Ji-Yoen., Craigen, Evelyn, Gonzales, Kristyn, Beckinghausen, Jaclyn, & Zoghbi, Huda Y. (2018). Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. Elife, 7, e36768.

    Article  Google Scholar 

  12. Siddiqui, A., Chinta, S. J., Mallajosyula, J. K., Rajagopolan, S., Hanson, I., Rane, A., Melov, S., & Andersen, J. K. (2012). Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson’s disease. Free Radical Biology & Medicine, 53, 993–1003.

    Article  CAS  Google Scholar 

  13. Eschbach, J., Von Einem, B., Müller, K., Bayer, H., Scheffold, A., Morrison, B. E., Lenhard Rudolph, K., Thal, D. R., Witting, A., & Weydt, P. (2015). Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Annals of Neurology, 77, 15–32.

    Article  CAS  Google Scholar 

  14. Ecco, G., Imbeault, M., & Trono, D. (2017). KRAB zinc finger proteins. Development, 144, 2719–2729.

    Article  CAS  Google Scholar 

  15. Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49–55.

    Article  CAS  Google Scholar 

  16. Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.

    Article  CAS  Google Scholar 

  17. Mohammadinejad, R., Sassan, H., Pardakhty, A., Hashemabadi, M., Ashrafizadeh, M., Dehshahri, A., & Mandegary, A. (2020). ZEB1 and ZEB2 gene editing mediated by CRISPR/Cas9 in A549 cell line. Bratislavske Lekarske Listy, 121, 31–36.

    CAS  Google Scholar 

  18. Mohammadinejad, R., Biagioni, A., Arunkumar, G., Shapiro, R., Chang, K.-C., Sedeeq, M., Taiyab, A., Hashemabadi, M., Pardakhty, A., & Mandegary, A. (2020). EMT signaling: Potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences, 77, 2701–2722.

    Article  CAS  Google Scholar 

  19. Samare Gholami, A., Sasan, H. A., Hashemabadi, M., & Ravan, H. (2019). Design and Construction of Recombinant CRISPR Vector Harboring LRRK2 Gene for Parkinson’s Disease. Cell and Tissue Research, 10, 214–225.

    Google Scholar 

  20. Riordan, S. M., Heruth, D. P., Zhang, L. Q., & Ye, S. Q. (2015). Application of CRISPR/Cas9 for biomedical discoveries. Cell & Bioscience, 5, 1–11.

    Article  CAS  Google Scholar 

  21. Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46, 505–529.

    Article  CAS  Google Scholar 

  22. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308.

    Article  CAS  Google Scholar 

  23. Rousseaux, M. W. C., de Haro, M., Lasagna-Reeves, C. A., De Maio, A., Jafar-Nejad, P., Park, J., Al-Ramahi, I., Kayed, R., Botas, H., & Zoghbi, H. Y. (2015). TRIM28 regulates the stability and toxicity of alpha-synuclein and tau through a common mechanism. Journal of the Neurological Sciences, 357, e285–e286.

    Article  Google Scholar 

  24. Abak, A., Shoorei, H., Taheri, M., et al. (2021). ‘In vivo engineering of chromosome 19 q-arm by employing the CRISPR/AsCpf1 and ddAsCpf1 systems in human malignant gliomas (hypothesis). Journal of Molecular Neuroscience, 71, 1648–1663. https://doi.org/10.1007/s12031-021-01855-1

    Article  CAS  Google Scholar 

  25. Helmschrodt, C., Höbel, S., Schöniger, S., Bauer, A., Bonicelli, J., Gringmuth, M., Fietz, S. A., Aigner, A., Richter, A., & Richter, F. (2017). Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Molecular Therapy-Nucleic Acids., 15(9), 57–68.

    Article  Google Scholar 

  26. McCormack, A. L., Mak, S. K., Henderson, J. M., Bumcrot, D., Farrer, M. J., & Di Monte, D. A. (2010). α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PloS one., 5(8), e12122.

    Article  Google Scholar 

  27. Li, M., Xu, X., Chang, C. W., & Liu, Y. (2020). TRIM28 functions as the SUMO E3 ligase for PCNA in prevention of transcription induced DNA breaks. Proceedings of the National Academy of Sciences., 117(38), 23588–23596.

    Article  CAS  Google Scholar 

  28. Gehrmann, U., Burbage, M., Zueva, E., Goudot, C., Esnault, C., Ye, M., Carpier, J. M., Burgdorf, N., Hoyler, T., Suarez, G., & Joannas, L. (2019). Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proceedings of the National Academy of Sciences., 116(51), 25839–25849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express appreciation to the Shahid Bahonar University of Kerman for its support of this investigation.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The design and writing of the manuscript were performed by MH and MA. Data collection was performed by MH, HS, and KE, and data analysis was performed by MH, SE, and HR.

Corresponding author

Correspondence to Hosseinali Sasan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experiments and procedures were approved by the Animal Research Ethics Committee of the Kerman Neuroscience Research Center, Kerman, Iran (EC/KNRC/86–31).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemabadi, M., Sasan, H., Amandadi, M. et al. CRISPR/Cas9-Mediated Disruption of ZNF543 Gene: An Approach Toward Discovering Its Relation to TRIM28 Gene in Parkinson’s Disease. Mol Biotechnol 65, 243–251 (2023). https://doi.org/10.1007/s12033-022-00494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00494-0

Keywords

Navigation