Skip to main content

Advertisement

Log in

Kidney-Derived Methylated PAX2 Sequences in the Urine of Healthy Subjects as a Convenient Model for Optimizing Methylation-Based Liquid biopsy

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Although urine-based liquid biopsy has received considerable attention, there is a lack of a simple model to optimize assay parameters, including cell-free DNA (cfDNA) extraction, bisulfite modification, and bis-DNA recovery after conversion for methylation analysis in urine. The primary aim of this work was to establish a practical model by developing a quantitative methylation-sensitive PCR (qMS-PCR) assay for PAX2 based on hypermethylated PAX2 cfDNA that could be detected in healthy human urine. We first studied the methylation status of PAX2 in kidney tissues and whole blood, followed by an assessment of commercial kits for bisulfite conversion and bis-DNA recovery. Furthermore, we investigated the influence of urine storage and collection conditions on the preservation of methylated PAX2 in urine samples by qMS-PCR. As expected, PAX2 methylation was identified in urine but not in blood. Two commercial kits (CellCook and Zymo Research) had similar conversion efficiency and bis-DNA recovery. Urine storage for up to 5 days did not change PAX2 methylation estimates. Overall, cold storage of urine samples and the CellCook urine container maintained higher levels of methylated PAX2 compared to urine kept at room temperature and the conventional tubes, respectively. These findings highlight the importance of using the correct approaches/kits and optimizing experimental conditions as a diagnostic tool in the clinical setting. Our study provides insights on the development of urine-based liquid biopsy with DNA methylation as a universal biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heitzer, E., Ulz, P., & Geigl, J. B. (2015). Circulating tumor DNA as a liquid biopsy for cancer. Clinical Chemistry, 61(1), 112–123.

    Article  CAS  Google Scholar 

  2. Frenel, J. S., Carreira, S., Goodall, J., Roda, D., Perez-Lopez, R., Tunariu, N., Riisnaes, R., Miranda, S., Figueiredo, I., Nava-Rodrigues, D., et al. (2015). Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clinical Cancer Research, 21(20), 4586–4596.

    Article  CAS  Google Scholar 

  3. Salvi, S., Gurioli, G., De Giorgi, U., Conteduca, V., Tedaldi, G., Calistri, D., & Casadio, V. (2016). Cell-free DNA as a diagnostic marker for cancer: Current insights. Oncotargets and Therapy, 9, 6549–6559.

    Article  CAS  Google Scholar 

  4. Garcia-Murillas, I., Schiavon, G., Weigelt, B., Ng, C., Hrebien, S., Cutts, R. J., Cheang, M., Osin, P., Nerurkar, A., Kozarewa, I., et al. (2015). Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med, 7(302), 302ra133.

    Article  Google Scholar 

  5. Roy, D., & Tiirikainen, M. (2020). Diagnostic power of DNA methylation classifiers for early detection of cancer. Trends Cancer, 6(2), 78–81.

    Article  CAS  Google Scholar 

  6. Constancio, V., Nunes, S. P., Henrique, R., & Jeronimo, C. (2020). DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells, 9(3), 624.

    Article  CAS  Google Scholar 

  7. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer–a survey. Biochimica et Biophysica Acta, 1775(1), 181–232.

    CAS  PubMed  Google Scholar 

  8. Holmes, E. E., Jung, M., Meller, S., Leisse, A., Sailer, V., Zech, J., Mengdehl, M., Garbe, L. A., Uhl, B., Kristiansen, G., et al. (2014). Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS ONE, 9(4), 93933.

    Article  Google Scholar 

  9. Izzi, B., Binder, A. M., & Michels, K. B. (2014). Pyrosequencing evaluation of widely available bisulfite conversion methods: Considerations for application. Medical Epigenet, 2(1), 28–36.

    Article  Google Scholar 

  10. Liu, X., Ren, J., Luo, N., Guo, H., Zheng, Y., Li, J., Tang, F., Wen, L., & Peng, J. (2019). Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq). Clinical Epigenetics, 11(1), 93.

    Article  CAS  Google Scholar 

  11. Zhou, Y., Xiong, M., Niu, J., Sun, Q., Su, W., Zen, K., Dai, C., & Yang, J. (2014). Secreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney. Journal of Cell Science, 127(Pt 20), 4494–4506.

    CAS  PubMed  Google Scholar 

  12. Merchant, M. L., Rood, I. M., Deegens, J. K. J., & Klein, J. B. (2017). Isolation and characterization of urinary extracellular vesicles: Implications for biomarker discovery. Nature Reviews. Nephrology, 13(12), 731–749.

    Article  CAS  Google Scholar 

  13. Priante, G., Gianesello, L., Ceol, M., Del Prete, D., & Anglani, F. (2019). Cell death in the kidney. International Journal of Molecular Sciences, 20(14), 3598.

    Article  CAS  Google Scholar 

  14. Su, Y. H., Wang, M., Brenner, D. E., Ng, A., Melkonyan, H., Umansky, S., Syngal, S., & Block, T. M. (2004). Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. The Journal of Molecular Diagnostics, 6(2), 101–107.

    Article  CAS  Google Scholar 

  15. Crisafulli, G., Mussolin, B., Cassingena, A., Montone, M., Bartolini, A., Barault, L., Martinetti, A., Morano, F., Pietrantonio, F., Sartore-Bianchi, A., et al. (2019). Whole exome sequencing analysis of urine trans-renal tumour DNA in metastatic colorectal cancer patients. ESMO Open, 4(6), e000572.

    Article  Google Scholar 

  16. Salvi, S., Gurioli, G., Martignano, F., Foca, F., Gunelli, R., Cicchetti, G., De Giorgi, U., Zoli, W., Calistri, D., & Casadio, V. (2015). Urine Cell-Free DNA integrity analysis for early detection of prostate cancer patients. Disease Markers, 2015, 574120.

    Article  Google Scholar 

  17. Casadio, V., Salvi, S., Martignano, F., Gunelli, R., Ravaioli, S., & Calistri, D. (2017). Cell-Free DNA integrity analysis in urine samples. Journal of Visualized Experiments. https://doi.org/10.3791/55049

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith, C. G., Moser, T., Mouliere, F., Field-Rayner, J., Eldridge, M., Riediger, A. L., Chandrananda, D., Heider, K., Wan, J. C. M., Warren, A. Y., et al. (2020). Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med, 12(1), 23.

    Article  CAS  Google Scholar 

  19. Hong, S. R., & Shin, K. J. (2021). Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Frontiers in Genetics, 12, 618955.

    Article  CAS  Google Scholar 

  20. Grunau, C., Clark, S. J., & Rosenthal, A. (2001). Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Research, 29(13), E65-65.

    Article  CAS  Google Scholar 

  21. Leontiou, C. A., Hadjidaniel, M. D., Mina, P., Antoniou, P., Ioannides, M., & Patsalis, P. C. (2015). Bisulfite conversion of DNA: Performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing. PLoS ONE, 10(8), e0135058.

    Article  Google Scholar 

  22. Kint, S., De Spiegelaere, W., De Kesel, J., Vandekerckhove, L., & Van Criekinge, W. (2018). Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE, 13(6), e0199091.

    Article  Google Scholar 

  23. Wu, H., Chen, Y., Liang, J., Shi, B., Wu, G., Zhang, Y., Wang, D., Li, R., Yi, X., Zhang, H., et al. (2005). Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature, 438(7070), 981–987.

    Article  CAS  Google Scholar 

  24. Patricio, P., Ramalho-Carvalho, J., Costa-Pinheiro, P., Almeida, M., Barros-Silva, J. D., Vieira, J., Dias, P. C., Lobo, F., Oliveira, J., Teixeira, M. R., et al. (2013). Deregulation of PAX2 expression in renal cell tumours: Mechanisms and potential use in differential diagnosis. Journal of Cellular and Molecular Medicine, 17(8), 1048–1058.

    Article  CAS  Google Scholar 

  25. Chen, X., Zhang, J., Ruan, W., Huang, M., Wang, C., Wang, H., Jiang, Z., Wang, S., Liu, Z., Liu, C., et al. (2020). Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. The Journal of Clinical Investigation, 130(12), 6278–6289.

    Article  CAS  Google Scholar 

  26. Su, Y. H., Wang, M., Brenner, D. E., Norton, P. A., & Block, T. M. (2008). Detection of mutated K-ras DNA in urine, plasma, and serum of patients with colorectal carcinoma or adenomatous polyps. Annals of the New York Academy of Sciences, 1137, 197–206.

    Article  CAS  Google Scholar 

  27. Bach, S., Paulis, I., Sluiter, N. R., Tibbesma, M., Martin, I., van de Wiel, M. A., Tuynman, J. B., Bahce, I., Kazemier, G., & Steenbergen, R. D. M. (2021). Detection of colorectal cancer in urine using DNA methylation analysis. Science and Reports, 11(1), 2363.

    Article  CAS  Google Scholar 

  28. Oshi, M., Murthy, V., Takahashi, H., Huyser, M., Okano, M., Tokumaru, Y., Rashid, O. M., Matsuyama, R., Endo, I., & Takabe, K. (2021). Urine as a source of liquid biopsy for Cancer. Cancers (Basel), 13(11), 2652.

    Article  CAS  Google Scholar 

  29. Liu, B., Ricarte Filho, J., Mallisetty, A., Villani, C., Kottorou, A., Rodgers, K., Chen, C., Ito, T., Holmes, K., Gastala, N., et al. (2020). Detection of promoter DNA methylation in urine and plasma aids the detection of non-small cell lung cancer. Clinical Cancer Research, 26(16), 4339–4348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Deng or Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Xc., Chen, Qp., Yuan, Jj. et al. Kidney-Derived Methylated PAX2 Sequences in the Urine of Healthy Subjects as a Convenient Model for Optimizing Methylation-Based Liquid biopsy. Mol Biotechnol 64, 1088–1094 (2022). https://doi.org/10.1007/s12033-022-00481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00481-5

Keywords

Navigation