Skip to main content

Advertisement

Log in

MiR-221-3p Facilitates Thyroid Cancer Cell Proliferation and Inhibit Apoptosis by Targeting FOXP2 Through Hedgehog Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Thyroid cancer (TC) is most often found in the endocrine system, the incidence of which has been on a continuous increase in recent years. For a better treatment of it, it becomes a pressing matter to further delve into the mechanism of TC onset and progression. FOXP2 is lowly expressed in diverse cancer, which has a deep connection with malignant progression of tumors. However, in TC, studies about this gene are exceedingly limited. In this study, FOXP2 was discovered to be lowly expressed in TC tissues based on the analysis of TCGA database. This finding was further confirmed by the qRT-PCR that FOXP2 was lowly expressed in TC cell lines. The results of a series of cell function assays demonstrated that overexpressed FOXP2 could hamper TC cell proliferation and stemness, facilitate apoptosis, and arrest the cell cycle. For a deep exploration of its mechanism, we mined its upstream factor miR-221-3p with the aid of starBase and mirDIP databases. The dual-luciferase reporter assay was employed to verify the binding relationship between miR-221-3p and FOXP2. Besides, we also discovered the HEDGEHOG pathway existing downstream of FOXP2 by gene set enrichment analysis. Based on these findings, we also performed a rescue experiment, the result of which indicated that the overexpression of FOXP2 was able to reverse the effects of overexpressed miR-221-3p in several cell activities including proliferation, sphere-formation, apoptosis, and cell cycle. Besides, it could also have an impact on the expression of HEDGEHOG pathway-related proteins influenced by overexpressed miR-221-3p. Our study provided the new insights into the mechanism by which miR-221-3p functions in the development of TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Ren, R., Du, Y., Niu, X., & Zang, R. (2021). ZFPM2-AS1 transcriptionally mediated by STAT1 regulates thyroid cancer cell growth, migration and invasion via miR-515-5p/TUSC3. Journal of Cancer, 12, 3393–3406. https://doi.org/10.7150/jca.51437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin, M., Lee, W. K., You, M. H., Jang, A., Cheng, S. Y., Kim, W. G., Jeon, M. J., & Lee, Y. M. (2021). SHMT2 expression as a diagnostic and prognostic marker for thyroid cancer. Endocrine Connections, 10, 630–636. https://doi.org/10.1530/EC-21-0135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, L., Huang, Y., Liu, C., Guo, M., Ma, Z., He, J., Wang, A., Sun, X., & Liu, Z. (2021). Deltex3 inhibits epithelial mesenchymal transition in papillary thyroid carcinoma via promoting ubiquitination of XRCC5 to regulate the AKT signal pathway. Journal of Cancer, 12, 860–873. https://doi.org/10.7150/jca.48141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo, Q., Guo, F., Fu, Q., & Sui, G. (2021). hsa_circ_0001018 promotes papillary thyroid cancer by facilitating cell survival, invasion, G1/S cell cycle progression, and repressing cell apoptosis via crosstalk with miR-338-3p and SOX4. Molecular Therapy—Nucleic Acids, 24, 591–609. https://doi.org/10.1016/j.omtn.2021.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou, X., Shi, X., Zhang, W., Li, D., Hu, L., Yang, J., Zhao, J., Wei, S., Wei, X., Ruan, X., & Zheng, X. (2021). LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death & Disease, 12, 347. https://doi.org/10.1038/s41419-021-03641-8

    Article  CAS  Google Scholar 

  7. Wang, J. M., Jiang, J. Y., Zhang, D. L., Du, X., Wu, T., & Du, Z. X. (2021). HYOU1 facilitates proliferation, invasion and glycolysis of papillary thyroid cancer via stabilizing LDHB mRNA. Journal of Cellular and Molecular Medicine, 25, 4814–4825. https://doi.org/10.1111/jcmm.16453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523. https://doi.org/10.1038/35097076

    Article  CAS  PubMed  Google Scholar 

  9. Chen, M. T., Sun, H. F., Li, L. D., Zhao, Y., Yang, L. P., Gao, S. P., & Jin, W. (2018). Downregulation of FOXP2 promotes breast cancer migration and invasion through TGFbeta/SMAD signaling pathway. Oncology Letters, 15, 8582–8588. https://doi.org/10.3892/ol.2018.8402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia, W. Z., Yu, T., An, Q., Yang, H., Zhang, Z., Liu, X., & Xiao, G. (2016). MicroRNA-190 regulates FOXP2 genes in human gastric cancer. Oncotargets and Therapy, 9, 3643–3651. https://doi.org/10.2147/OTT.S103682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Z. Y., et al. (2019). Upregulated microRNA6713p promotes tumor progression by suppressing forkhead box P2 expression in nonsmallcell lung cancer. Molecular Medicine Reports, 20, 3149–3159. https://doi.org/10.3892/mmr.2019.10563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, X. G., et al. (2019). Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis, 22, 397–410. https://doi.org/10.1007/s10456-019-09665-1

    Article  CAS  PubMed  Google Scholar 

  13. Ma, J., Miao, H., Zhang, H., Ren, J., Qu, S., Da, J., Xu, F., & Zhao, H. (2021). LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2. Diagnostic Pathology, 16, 46. https://doi.org/10.1186/s13000-021-01108-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, Q., Ren, X., Zhang, Y., Fu, X., Li, Y., Peng, Y., Xiao, Q., Li, T., Ouyang, C., Hu, Y., & Zhang, Y. (2018). MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochemical and Biophysical Research Communications, 497, 1162–1170. https://doi.org/10.1016/j.bbrc.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  15. Ye, T., Zhong, L., Ye, X., Liu, J., Li, L., & Yi, H. (2021). miR-221-3p and miR-222-3p regulate the SOCS3/STAT3 signaling pathway to downregulate the expression of NIS and reduce radiosensitivity in thyroid cancer. Experimental and Therapeutic Medicine, 21, 652. https://doi.org/10.3892/etm.2021.10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue, F., Li, Q. R., Xu, Y. H., & Zhou, H. B. (2019). MicroRNA-139-3p inhibits the growth and metastasis of ovarian cancer by inhibiting ELAVL1. Oncotargets and Therapy, 12, 8935–8945. https://doi.org/10.2147/OTT.S210739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, L., Yuan, Y., & Li, H. Y. (2019). MicroRNA-139-3p suppresses growth and metastasis of glioblastoma via inhibition of NIN1/RPNI2 binding protein 1 homolog. European Review for Medical and Pharmacological Sciences, 23, 4264–4274. https://doi.org/10.26355/eurrev_201905_17931

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, T., Zheng, J., Zhuo, W., Pan, P., Li, M., Zhang, W., Zhou, H., Gao, Y., Li, X., & Liu, Z. (2021). ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discovery, 7, 126. https://doi.org/10.1038/s41420-021-00508-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baloch, Z. W., & LiVolsi, V. A. (2018). Special types of thyroid carcinoma. Histopathology, 72, 40–52. https://doi.org/10.1111/his.13348

    Article  PubMed  Google Scholar 

  20. Cabanillas, M. E., & Habra, M. A. (2016). Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treatment Reviews, 42, 47–55. https://doi.org/10.1016/j.ctrv.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  21. Applewhite, M. K., James, B. C., Kaplan, S. P., Angelos, P., Kaplan, E. L., Grogan, R. H., & Aschebrook-Kilfoy, B. (2016). Quality of life in thyroid cancer is similar to that of other cancers with worse survival. World Journal of Surgery, 40, 551–561. https://doi.org/10.1007/s00268-015-3300-5

    Article  PubMed  Google Scholar 

  22. Wang, Q. S., Kong, P. Z., Li, X. Q., Yang, F., & Feng, Y. M. (2015). FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer. Breast Cancer Research, 17, 30. https://doi.org/10.1186/s13058-015-0531-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, Z., Lin, X., Tian, M., & Chang, W. (2018). microRNA196b promotes cell migration and invasion by targeting FOXP2 in hepatocellular carcinoma. Oncology Reports, 39, 731–738. https://doi.org/10.3892/or.2017.6130

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Z., Xiang, B., Qi, L., Zhu, S., & Li, L. (2020). miR-221-3p promotes hepatocellular carcinogenesis by downregulating O6-methylguanine-DNA methyltransferase. Cancer Biology & Therapy, 21, 915–926. https://doi.org/10.1080/15384047.2020.1806642

    Article  CAS  Google Scholar 

  25. Wang, C., Jing, J., Hu, X., Yu, S., Yao, F., Li, Z., & Cheng, L. (2021). Gankyrin activates the hedgehog signalling to drive metastasis in osteosarcoma. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/jcmm.16576

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan, Y., Zhou, J., Zhang, W., Yan, L., Lu, M., Dai, Y., Zhou, H., Zhang, S., & Yang, J. (2021). The sonic Hedgehog signaling pathway regulates autophagy and migration in ovarian cancer. Cancer Medicine, 10, 4510–4521. https://doi.org/10.1002/cam4.4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng, X., & Ju, D. (2018). Hedgehog signaling pathway and autophagy in cancer. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19082279

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xin, M., Ji, X., De La Cruz, L. K., Thareja, S., & Wang, B. (2018). Strategies to target the Hedgehog signaling pathway for cancer therapy. Medicinal Research Reviews, 38, 870–913. https://doi.org/10.1002/med.21482

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

There is no fund for this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WC. Data curation: QC, WC, HL. Formal analysis: YL, CC. Methodology: QC, HL. Software: YL, CC. Validation: WC, YL. Investigation: HL. Writing—original draft: WC, YL. Writing—review & editing: CC, HL. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunyou Chen.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical Approval

Our study did not require an ethical board approval because it did not contain human or animal trials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, W., Chang, Q., Lu, H. et al. MiR-221-3p Facilitates Thyroid Cancer Cell Proliferation and Inhibit Apoptosis by Targeting FOXP2 Through Hedgehog Pathway. Mol Biotechnol 64, 919–927 (2022). https://doi.org/10.1007/s12033-022-00473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00473-5

Keywords

Navigation