Skip to main content
Log in

Selectable Markers to Marker-Free Selection in Rice

Molecular Biotechnology Aims and scope Submit manuscript

Cite this article

Abstract

Inadequate rice production worldwide is largely attributed to abiotic and biotic stresses, along with high sensitivity of cultivable plant germplasm. In the field of cereal biotechnology, rice engineering plays an important role in achieving tolerance to such stresses. Plant transformation and selection play crucial role in rice engineering. This review summarized the antibiotic, herbicide and metabolic selection marker genes (SMG) employed in diverse rice engineering studies. These SMGs are no longer required after the transformation has been achieved, hence undesirable at the commercial level. This study also included several strategies employed in rice engineering to eliminate such foreign DNA elements. These include co-transformation, site-specific recombination, transposon and CRISPR base approaches. CRISPR/Cas9 being simple and efficient, is considered a crucial step toward clean gene technology. Further ease and applicability of CRISPR/Cas9 in the embryos directly can help us to modify target genes with efficient marker-free selection in minimum time. Overall, this review summarizes and analyse the recent advances that have enormous potential in rice improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

SMG:

Selectable marker gene

nptII :

Neomycin phosphotransferase II encoding gene

EPSPS:

5-Enolpyruvyl shikimate 3-phosphate synthase

hpt :

Hygromycin phosphotransferase encoding gene

GM:

Genetically modified

hph :

Hygromycin B phosphotransferase encoding gene

T-DNA:

Transfer DNA

FLP/FRT :

Flippase/FLP recombinase recognition target

CRE/loxP :

Cre recombinase/locus of x-over, P1

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR associated protein

References

  1. FAO. (2017). The future of food and agriculture – Trends and challenges. Rome. ISBN 978-92-5-109551-5.

  2. Agnoun, A., Samadori, S., Biaou, H., Sié, M., Vodouhè, R. S., & Ahanchédé, A. (2012). The African rice Oryza glaberrima Steud: Knowledge distribution and prospects. International Journal of Biology, 4(3). https://doi.org/10.5539/ijb.v4n3p158

    Article  Google Scholar 

  3. FAO. (2009). A searchable catalogue of grass and forage legumes. FAO.

  4. Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., & McCouch, S. (2005). Genetic structure and diversity in Oryza sativa L. Genetics, 169(3), 1631–1638.

    Article  CAS  Google Scholar 

  5. Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Hasan, M. M., Oladosu, Y. A., Magaji, U. G., Akos, I., & Olalekan, K. K. (2019). Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Molecular Biology Reports, 46(1), 1519–1532.

    Article  CAS  Google Scholar 

  6. Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65(4), 547–570.

    Article  CAS  Google Scholar 

  7. Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Blast resistance in rice: A review of conventional breeding to molecular approaches. Molecular Biology Reports, 40(3), 2369–2388.

    Article  CAS  Google Scholar 

  8. Ntuli, T. M. (2012). Drought and desiccation-tolerance and sensitivity in plants. In J. K. Mworia (Ed.), Botany (pp. 29–60) In Tech.

  9. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803.

    Article  CAS  Google Scholar 

  10. Zheng, X., Chen, B., Lu, G., & Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379(4), 985–989.

    Article  CAS  Google Scholar 

  11. Pieters, A. J., & El Souki, S. (2005). Effects of drought during grain filling on PS II activity in rice. Journal of Plant Physiology, 162(8), 903–911.

    Article  CAS  Google Scholar 

  12. Singh, P. K., & Gautam, S. (2013). Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35(8), 2345–2353.

    Article  CAS  Google Scholar 

  13. Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91(2), 227–241. https://doi.org/10.1093/aob/mcf242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., & Mackill, D. (2010). Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice, 3(2), 138–147. https://doi.org/10.1007/s12284-010-9048-5

    Article  Google Scholar 

  15. Shimono, H., Hasegawa, T., & Iwama, K. (2002). Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Research, 73(2–3), 67–79.

    Article  Google Scholar 

  16. Lone, J. A., Khan, M. N., Bhat, M. A., Shikari, A. B., Wani, S. H., Sofi, N. R., Khan, M. I., & Lone, R. A. (2018). Cold tolerance at germination and seedling stages of rice: Methods of evaluation and characterization of thirty rice genotypes under stress conditions. International Journal of Current Microbiology and Applied Sciences, 7, 1103–1109.

    Article  Google Scholar 

  17. Yookongkaew, N., Srivatanakul, M., & Narangajavana, J. (2007). Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica). Journal of Plant Research, 120(2), 237–245. https://doi.org/10.1007/s10265-006-0046-z

  18. Jones, H. D. (2003). GENETIC MODIFICATION | Transformation, general principles. In B. B. T.-E. of A. P. S. Thomas (Ed.), (pp. 377–382). Elsevier. https://doi.org/10.1016/B0-12-227050-9/00197-6

  19. Oppenheimer, N. J., Rodriguez, L. O., & Hecht, S. M. (1980). Metal binding to modified bleomycins. Zinc and ferrous complexes with an acetylated bleomycin. Biochemistry, 19(17), 4096–4103. https://doi.org/10.1021/bi00558a030

  20. Datta, S. K., Datta, K., Soltanifar, N., Donn, G., & Potrykus, I. (1992). Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Molecular Biology, 20(4), 619–629. https://doi.org/10.1007/BF00046447

    Article  CAS  PubMed  Google Scholar 

  21. Wilmink, A., & Dons, J. J. M. (1993). Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Molecular Biology Reporter, 11(2), 165–185. https://doi.org/10.1007/BF02670474

    Article  CAS  Google Scholar 

  22. Kotra, L. P., Haddad, J., & Mobashery, S. (2000). Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrobial Agents and Chemotherapy, 44(12), 3249LP–3256LP. https://doi.org/10.1128/AAC.44.12.3249-3256.2000

  23. Franklin, T. J., & Snow, G. A. (2005). Biochemistry and molecular biology of antimicrobial drug action. Biochemistry and Molecular Biology of Antimicrobial Drug Action. https://doi.org/10.1007/0-387-27566-5

    Article  Google Scholar 

  24. Chauvin, J.-E., Marhadour, S., Cohat, J., & Le Nard, M. (1999). Effects of gelling agents on in vitro regeneration and kanamycin efficiency as a selective agent in plant transformation procedures. Plant Cell, Tissue and Organ Culture, 58(3), 213–217. https://doi.org/10.1023/A:1006390929364

    Article  CAS  Google Scholar 

  25. Joersbo, M., & Okkels, F. T. (1996). A novel principle for selection of transgenic plant cells: Positive selection. Plant Cell Reports, 16(3), 219–221. https://doi.org/10.1007/BF01890871

    Article  CAS  PubMed  Google Scholar 

  26. Lin, J.-J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-T

  27. Tran, T. N., & Sanan-Mishra, N. (2015). Effect of antibiotics on callus regeneration during transformation of IR 64 rice. Biotechnology Reports (Amsterdam, Netherlands), 7, 143–149. https://doi.org/10.1016/j.btre.2015.06.004

    Article  Google Scholar 

  28. Thodsaporn, P., Bunnag, S., Theerakulpisut, P., & Manit, K. (2004). Transformation of indica rice (Oryza sativa L.) cv. RD6 mediated by Agrobacterium tumefaciens. Songklanakarin Journal of Science and Technology, 26, 1–13.

    Google Scholar 

  29. Chan, M.-T., Lee, T.-M., & Chang, H.-H. (1992). Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant and Cell Physiology, 33(5), 577–583.

  30. Tripathi, R., Bisht, H., & Singh, R. (2010). Effect of acetosyringone and callus age on transformation for scutellum-derived callus of rice. International Journal of Pharma and Bio Sciences, 1, 163.

    Google Scholar 

  31. Dong, J., Teng, W., Buchholz, W. G., & Hall, T. C. (1996). Agrobacterium-mediated transformation of Javanica rice. Molecular Breeding, 2(3), 267–276. https://doi.org/10.1007/BF00564204

    Article  CAS  Google Scholar 

  32. Hiei, Y., & Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 85, 271–283. https://doi.org/10.1007/s11240-005-9069-8

    Article  CAS  Google Scholar 

  33. Lin, Y., & Zhang, Q. (2005). Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports, 23, 540–547. https://doi.org/10.1007/s00299-004-0843-6

    Article  CAS  PubMed  Google Scholar 

  34. Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., & Tanaka, H. (2006). Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal: For Cell and Molecular Biology, 47, 969–976. https://doi.org/10.1111/j.1365-313X.2006.02836.x

    Article  CAS  Google Scholar 

  35. van den Elzen, P. J. M., Townsend, J., Lee, K. Y., & Bedbrook, J. R. (1985). A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Molecular Biology, 5(5), 299–302. https://doi.org/10.1007/BF00020627

    Article  PubMed  Google Scholar 

  36. Zuraida, A. R., Rahiniza, K., Zulkifli, A. S., Alizah, Z., Zamri, Z., & Aziz, A. (2013). Hygromycin as selective marker in Agrobacterium-mediated genetic transformation of indica rice MR 219. Journal of Tropical Agriculture and Food Science, 41, 71–79.

    Google Scholar 

  37. Htwe, N. N., Ling, H. C., Zaman, F. Q., & Maziah, M. (2014). Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII). Pakistan Journal of Biological Sciences: PJBS, 17(4), 472–481.

    Article  CAS  Google Scholar 

  38. Dekeyser, R., Claes, B., Marichal, M., Van Montagu, M., & Caplan, A. (1989). Evaluation of selectable markers for rice transformation. Plant Physiology, 90(1), 217–223. https://doi.org/10.1104/pp.90.1.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Decker, A., Chow, M. S., Kemsley, J. N., Lehnert, N., & Solomon, E. I. (2006). Direct hydrogen-atom abstraction by activated bleomycin: An experimental and computational study. Journal of the American Chemical Society, 128(14), 4719–4733. https://doi.org/10.1021/ja057378n

    Article  CAS  PubMed  Google Scholar 

  40. Stubbe, J., & Kozarich, J. W. (1987). Mechanisms of bleomycin-induced DNA degradation. Chemical Reviews, 87(5), 1107–1136. https://doi.org/10.1021/cr00081a011

    Article  CAS  Google Scholar 

  41. Gatignol, A., Durand, H., & Tiraby, G. (1988). Bleomycin resistance conferred by a drug-binding protein. FEBS Letters, 230(1–2), 171–175. https://doi.org/10.1016/0014-5793(88)80665-3

    Article  CAS  PubMed  Google Scholar 

  42. Sugiyama, M., Kumagai, T., Hayashida, M., Maruyama, M., & Matoba, Y. (2002). The 1.6-Å crystal structure of the copper(II)-bound bleomycin complexed with the bleomycin-binding protein from bleomycin-producing Streptomyces verticillus. Journal of Biological Chemistry, 277(3), 2311–2320. https://doi.org/10.1074/jbc.M103278200

  43. Burger, R. M., Peisach, J., & Horwitz, S. B. (1981). Activated bleomycin. Journal of Biological Chemistry, 256(22), 11636–11644.

    Article  CAS  Google Scholar 

  44. Sugiyama, M., Kumagai, T., Shionoya, M., Kimura, E., & Davies, J. E. (1994). Inactivation of bleomycin by an N-acetyltransferase in the bleomycin-producing strain Streptomyces verticillus. FEMS Microbiology Letters, 121(1), 81–85. https://doi.org/10.1111/j.1574-6968.1994.tb07079.x

    Article  CAS  PubMed  Google Scholar 

  45. Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., & Punier, A. (1988). Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene, 70(1), 25–37.

    Article  CAS  Google Scholar 

  46. Wehrmann, A., Van Vliet, A., Opsomer, C., Botterman, J., & Schulz, A. (1996). The similarities of bar and pat gene products make them equally applicable for plant engineers. Nature Biotechnology, 14(10), 1274–1278.

    Article  CAS  Google Scholar 

  47. Cao, J., Duan, X., McEIroy, D., & Wu, R. (1992). Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reports, 11(11), 586–591. https://doi.org/10.1007/BF00233098

    Article  CAS  PubMed  Google Scholar 

  48. Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., & Stalker, D. M. (1985). Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 317(6039), 741–744. https://doi.org/10.1038/317741a0

    Article  CAS  Google Scholar 

  49. Herrmann, K. M., & Weaver, L. M. (1999). The Shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 473–503. https://doi.org/10.1146/annurev.arplant.50.1.473

    Article  CAS  PubMed  Google Scholar 

  50. Chhapekar, S., Sanagala, R., Pavan, G., Chopperla, R., Singh, V., Phanindra, M., Dhandapani, G., Sreevathsa, R., & Kumar, P. (2014). Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Reports. https://doi.org/10.1007/s00299-014-1732-2

    Article  PubMed  Google Scholar 

  51. Ramzi, S., Sohani, M., shirzadian-khorramabad, R., Asghari, J., & Amininasab, M. (2020). Enhancement of glyphosate tolerance in rice (Oryza sativa L.) through mutation induction in EPSPS (5-enolpyruvylshikimate-3-phosphate synthase). Plant Gene, 22, 100225. https://doi.org/10.1016/j.plgene.2020.100225

  52. Te, Z., Lin, C., & Shen, Z. (2011). Development of transgenic glyphosate-resistant rice with G6 gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Agricultural Sciences in China, 10(9), 1307–1312.

    Article  Google Scholar 

  53. Cui, Y., Huang, S., Liu, Z., Yi, S., Zhou, F., Chen, H., & Lin, Y. (2016). Development of novel glyphosate-tolerant japonica rice lines: A step toward commercial release. Frontiers in Plant Science, 7, 1218.

    PubMed  PubMed Central  Google Scholar 

  54. He, Z., Fu, Y., Si, H., Hu, G., Zhang, S., Yu, Y., & Sun, Z. (2004). Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science, 166(1), 17–22. https://doi.org/10.1016/S0168-9452(03)00338-8

  55. Goldsworthy, A., & Street, H. E. (1965). The carbohydrate nutrition of tomato roots: VIII. The mechanism of the inhibition by d-mannose of the respiration of excised roots. Annals of Botany, 29(1), 45–58. https://doi.org/10.1093/oxfordjournals.aob.a083936

  56. Lucca, P., Ye, X., & Potrykus, I. (2001). Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Molecular Breeding, 7(1), 43–49. https://doi.org/10.1023/A:1009661014167

    Article  CAS  Google Scholar 

  57. Zai-Song, D., Ming, Z., Yu-Xiang, J., Liang-Bi, L., & Ting-Yun, K. (2006). Efficient Agrobacterium-mediated transformation of rice by phosphomannose isomerase/mannose selection. Plant Molecular Biology Reporter, 24(3), 295–303. https://doi.org/10.1007/BF02913456

    Article  Google Scholar 

  58. Lu, C. (2010). The first approved transgenic rice in China. GM Crops, 1, 113–115. https://doi.org/10.4161/gmcr.1.3.12377

    Article  PubMed  Google Scholar 

  59. Lu, B.-R., & Yang, C. (2009). Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnology Advances, 27(6), 1083–1091. https://doi.org/10.1016/j.biotechadv.2009.05.018

  60. Wang, Y., Lai, W., Chen, J., & Mei, S. (2000). Toxicity of anti-herbicide gene (BAR) transgenic rice. Journal of Hygiene Research, 29(3), 141–142.

    PubMed  Google Scholar 

  61. Sahai, S. (2003). Genetically modified crops: Issues for India. Fin Agric, 35, 7–11.

    Google Scholar 

  62. Biotech Consortium India Limited. (2005). Biosafety issues related to transgenic crops. Ministry of Environment and Forests Government of India.

  63. Daley, M., Knauf, V. C., Summerfelt, K. R., & Turner, J. C. (1998). Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 17(6), 489–496. https://doi.org/10.1007/s002990050430

    Article  CAS  PubMed  Google Scholar 

  64. De Block, M., & Debrouwer, D. (1991). Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theoretical and Applied Genetics, 82(3), 257–263. https://doi.org/10.1007/BF02190610

    Article  PubMed  Google Scholar 

  65. Komari, T., Hiei, Y., Saito, Y., Murai, N., & Kumashiro, T. (1996). Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal, 10(1), 165–174. https://doi.org/10.1046/j.1365-313X.1996.10010165.x

  66. Matsunaga, E., Sugita, K., & Ebinuma, H. (2002). Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Molecular Breeding, 10(1), 95–106. https://doi.org/10.1023/A:1020308216747

    Article  CAS  Google Scholar 

  67. Parkhi, V., Rai, M., Tan, J., Oliva, N., Rehana, S., Bandyopadhyay, A., Torrizo, L., Ghole, V., Datta, K., & Datta, S. K. (2005). Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm. Molecular Genetics and Genomics, 274(4), 325–336. https://doi.org/10.1007/s00438-005-0030-7

    Article  CAS  PubMed  Google Scholar 

  68. Sripriya, R., Raghupathy, V., & Veluthambi, K. (2008). Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Reports, 27(10), 1635. https://doi.org/10.1007/s00299-008-0586-x

    Article  CAS  PubMed  Google Scholar 

  69. Ramana Rao, M. V., Parameswari, C., Sripriya, R., & Veluthambi, K. (2011). Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Reports, 30(7), 1241–1252. https://doi.org/10.1007/s00299-011-1033-y

    Article  CAS  PubMed  Google Scholar 

  70. Ling, F., Zhou, F., Chen, H., & Lin, Y. (2016). Development of marker-free insect-resistant indica rice by Agrobacterium tumefaciens-mediated co-transformation. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.01608

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kilby, N. J., Snaith, M. R., & Murray, J. A. H. (1993). Site-specific recombinases: Tools for genome engineering. Trends in Genetics, 9(12), 413–421. https://doi.org/10.1016/0168-9525(93)90104-P

  72. Onouchi, H., Nishihama, R., Kudo, M., Machida, Y., & Machida, C. (1995). Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Molecular and General Genetics MGG, 247(6), 653–660. https://doi.org/10.1007/BF00290396

    Article  CAS  PubMed  Google Scholar 

  73. Sugita, K., Matsunaga, E., & Ebinuma, H. (1999). Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Reports, 18(11), 941–947. https://doi.org/10.1007/s002990050688

    Article  CAS  Google Scholar 

  74. Ebinuma, H., Sugita, K., Matsunaga, E., Endo, S., Yamada, K., & Komamine, A. (2001). Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Reports, 20(5), 383–392. https://doi.org/10.1007/s002990100344

    Article  CAS  PubMed  Google Scholar 

  75. Gidoni, D., Bar, M., & Gilboa, N. (2001). FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Research, 10(4), 317–328. https://doi.org/10.1023/A:1016603627254

    Article  CAS  PubMed  Google Scholar 

  76. Hoess, R. H., & Abremski, K. (1985). Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. Journal of Molecular Biology, 181(3), 351–362. https://doi.org/10.1016/0022-2836(85)90224-4

  77. Dale, E. C., & Ow, D. W. (1991). Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences of the United States of America, 88(23), 10558–10562. https://doi.org/10.1073/pnas.88.23.10558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D., & Yin, Z. (2005). Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Reports, 24(2), 86–94. https://doi.org/10.1007/s00299-004-0909-5

  79. Bai, X., Wang, Q., & Chu, C. (2008). Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Research, 17(6), 1035–1043. https://doi.org/10.1007/s11248-008-9182-7

    Article  CAS  PubMed  Google Scholar 

  80. Sengupta, S., Chakraborti, D., Mondal, H. A., & Das, S. (2010). Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers. Plant Cell Reports, 29(3), 261–271. https://doi.org/10.1007/s00299-010-0819-7

    Article  CAS  PubMed  Google Scholar 

  81. Khattri, A., Nandy, S., & Srivastava, V. (2011). Heat-inducible Cre-lox system for marker excision in transgenic rice. Journal of Biosciences, 36(1), 37–42. https://doi.org/10.1007/s12038-011-9010-8

    Article  CAS  PubMed  Google Scholar 

  82. Radhakrishnan, P., & Srivastava, V. (2005). Utility of the FLP-FRT recombination system for genetic manipulation of rice. Plant Cell Reports, 23(10), 721–726. https://doi.org/10.1007/s00299-004-0876-x

    Article  CAS  PubMed  Google Scholar 

  83. Hu, Q., Kononowicz-Hodges, H., Nelson, K., Viola, D., Zeng, P., Liu, H., Kausch, A. P., Chandlee, J. M., Hodges, T. K., & Luo, H. (2008). FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnology Journal, 6, 176–188. https://doi.org/10.1111/j.1467-7652.2007.00310.x

    Article  CAS  PubMed  Google Scholar 

  84. Woo, H.-J., Qin, Y., Park, S.-Y., Park, S. K., Cho, Y.-G., Shin, K.-S., Lim, M. H., & Cho, H.-S. (2015). Development of selectable marker-free transgenic rice plants with enhanced seed tocopherol content through FLP/FRT-mediated spontaneous auto-excision. PLoS ONE, 10(7), e0132667. https://doi.org/10.1371/journal.pone.0132667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nandy, S., & Srivastava, V. (2012). Marker-free site-specific gene integration in rice based on the use of two recombination systems. Plant Biotechnology Journal, 10(8), 904–912. https://doi.org/10.1111/j.1467-7652.2012.00715.x

  86. Akbudak, M. A., & Srivastava, V. (2011). Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre–lox mediated site-specific gene integration in rice. Molecular Biotechnology, 49(1), 82–89. https://doi.org/10.1007/s12033-011-9381-y

    Article  CAS  PubMed  Google Scholar 

  87. Pavingerová, D., Bříza, J., & Niedermeierová, H. (2001). Timing of transposition of Ac mobile element in potato. Biologia Plantarum, 44(3), 347–353. https://doi.org/10.1023/A:1012478323331

    Article  Google Scholar 

  88. Cotsaftis, O., Sallaud, C., Breitler, J. C., Meynard, D., Greco, R., Pereira, A., & Guiderdoni, E. (2002). Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Molecular Breeding, 10(3), 165–180. https://doi.org/10.1023/A:1020380305904

    Article  CAS  Google Scholar 

  89. Yu, C., Zhang, J., & Peterson, T. (2011). Genome rearrangements in maize induced by alternative transposition of reversed Ac/Ds termini. Genetics, 188(1), 59 LP–67 LP. https://doi.org/10.1534/genetics.111.126847

  90. Gao, X., Zhou, J., Li, J., Zou, X., Zhao, J., Li, Q., Xia, R., Yang, R., Wang, D., Zuo, Z., Tu, J., & Qu, S. (2015). Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy. Plant Physiology, 167(1), 11–24. https://doi.org/10.1104/pp.114.246173

    Article  CAS  PubMed  Google Scholar 

  91. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Srivastava, V., Underwood, J. L., & Zhao, S. (2017). Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell, Tissue and Organ Culture, 129(1), 153–160. https://doi.org/10.1007/s11240-016-1166-3

    Article  CAS  Google Scholar 

  93. Lu, H.-P., Liu, S.-M., Xu, S.-L., Chen, W.-Y., Zhou, X., Tan, Y.-Y., Huang, J. Z., & Shu, Q.-Y. (2017). CRISPR-S: An active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnology Journal, 15(11), 1371–1373. https://doi.org/10.1111/pbi.12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, T., Huang, J., Oung, H., Hsu, Y., & Tsai, Y. (2019). H2O2-based method for rapid detection of transgene-free rice plants from segregating CRISPR/Cas9 Genome-Edited Progenies. The International Journal of Molecular Sciences, 20(16), 3885.

    Article  CAS  Google Scholar 

  95. Toda, E., Koiso, N., Takebayashi, A., Ichikawa, M., Kiba, T., Osakabe, K., Osakabe, Y., Sakakibara, H., Kato, N., & Okamoto, T. (2019). An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 5(4), 363–368. https://doi.org/10.1038/s41477-019-0386-z

    Article  CAS  PubMed  Google Scholar 

  96. Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., Barry, K. W., Schmutz, J., & Ronald, P. C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-14981-y

    Article  CAS  Google Scholar 

  97. Li, C., Li, W., Zhou, Z., Chen, H., Xie, C., & Lin, Y. (2020). A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnology Journal, 18(2), 313–315. https://doi.org/10.1111/pbi.13217

    Article  PubMed  Google Scholar 

  98. Chong-Pérez, B., & Angenon, G. (2013). Strategies for Generating Marker-Free Transgenic Plants. In (Ed.), Genetic Engineering. IntechOpen. https://doi.org/10.5772/55573

Download references

Acknowledgements

The authors would like to acknowledge Science & Technology & Renewable Energy, UT Chandigarh [Grant No. S&T&RE/RP/147(21-22)/10/2021/956].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Priya Minhas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Chouhan, A., Bhatt, T. et al. Selectable Markers to Marker-Free Selection in Rice. Mol Biotechnol 64, 841–851 (2022). https://doi.org/10.1007/s12033-022-00460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00460-w

Keywords

Navigation