Skip to main content

Advertisement

Log in

An Esterase with Increased Acetone Tolerance from Bacillus subtilis E9 over Expressed in E. coli BL21 Using pTac Bs-est Vector

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis E9 was identified as a potential strain producing esterase. The gene coding esterase from B. subtilis E9 was amplified using esterase-specific primers and the sequence was translated in silico. The presence of conserved catalytic triad amino acid residues (His-Ser-Asp/Glu) confirmed the functional nature of the esterase enzyme. Docking studies conducted with modeled protein and the ligand p-nitrophenyl acetate showed that the amino acid residues interacting with the ligand were Ser77, His76, and Gly103. The gene coding for esterase from B. subtilis E9 was cloned into an assembled vector having Tac promoter (pTac), pUC origin of replication, Ni-Histidine residues, ampicillin cassette, and T7 terminator using Golden gate DNA assembly method. The generated pTac Bs-est (4598 bp) recombinant plasmid was transformed and heterologously expressed in Escherichia coli BL21 (DE3) strain. The tagged recombinant protein was purified to yield 43.4% pure protein with specific activity of 772 U/mg. The purified recombinant protein was subjected to peptide sequencing and the identity was confirmed as esterase by peptide tandem mass fragmentation method using the LC-MS/MS analysis. The purified recombinant esterase was found to be organic solvent stable and tolerant up to 5 days retaining around 95% residual activity in 30–90% v/v Acetone. The recombinant esterase expressed in our study was found to exhibit better organic solvent stability and tolerance than compared to the original bacterial esterase from B. subtilis E9, a property which could be explored in the biocatalytic and synthetic transformation reactions for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adıgüzel, A. O. (2020). Production and characterization of thermo-, halo- and solvent-stable esterase from Bacillus mojavensis TH309. Biocatalysis and Biotransformation, 38(3), 210–226. https://doi.org/10.1080/10242422.2020.1715370

    Article  CAS  Google Scholar 

  3. Romano, D., Bonomi, F., Mattos, M., Fonseca, T., de Oliveira, M. C. F., & Molinari, F. (2015). Esterases as stereoselective biocatalysts. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2015.01.006

    Article  PubMed  Google Scholar 

  4. Baath, J. A., Mazurkewich, S., Poulsen, J. C. N., Olsson, L., Lo Leggio, L., & Larsbrink, J. (2019). Structure-function analyses reveal that a glucuronoyl esterase from Teredinibacter turnerae interacts with carbohydrates and aromatic compounds. Journal of Biological Chemistry, 294(16), 6635–6644. https://doi.org/10.1074/jbc.RA119.007831

    Article  Google Scholar 

  5. Littlechild, J. A. (2017). Improving the ‘tool box’ for robust industrial enzymes. Journal of Industrial Microbiology and Biotechnology, 44(4–5), 711–720. https://doi.org/10.1007/s10295-017-1920-5

    Article  CAS  PubMed  Google Scholar 

  6. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K., & Bornscheuer, U. T. (2021). Biocatalysis: Enzymatic synthesis for industrial applications. Angewandte Chemie International Edition, 60, 88–119. https://doi.org/10.1002/ange.202006648

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty, K., & Raj, R. P. (2008). An extra-cellular alkaline metallolipase from Bacillus licheniformisMTCC 6824: Purification and biochemical characterization. Food Chemistry, 109(4), 727–736. https://doi.org/10.1016/j.foodchem.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  8. Soumya, P., & Kochupurackal, J. (2020). Pineapple Peel Extract as an Effective Substrate for Esterase Production from Bacillus subtilis E9. Current Microbiology. https://doi.org/10.1007/s00284-020-02073-5

    Article  PubMed  Google Scholar 

  9. Jiang, X., Huo, Y., Cheng, H., Zhang, X., Zhu, X., & Wu, M. (2012). Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T. Extremophiles: Life Under Extreme Conditions, 16, 427–435. https://doi.org/10.1007/s00792-012-0442-3

    Article  CAS  Google Scholar 

  10. Gangola, S., Sharma, A., Bhatt, P., Khati, P., & Chaudhary, P. (2018). Presence of esterase and laccase in Bacillus subtilis facilitate biodegradation and detoxification of cypermethrin. Scientific Reports, 8, 12755.

    Article  Google Scholar 

  11. Sanchez-Villeda, H., Schroeder, S., Flint-Garcia, S., Guill, K. E., Yamasaki, M., & McMullen, M. D. (2008). DNAAlignEditor: DNA alignment editor tool. BMC Bioinformatics, 9, 154. https://doi.org/10.1186/1471-2105-9-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arnold, N. S., Rees, W. G., Hodson, A. J., & Kohler, J. (2006). Topographic controls on the surface energy balance of a high Arctic valley glacier. Journal of Geophysical Research: Earth Surface, 111(2), 1–15. https://doi.org/10.1029/2005JF000426

    Article  Google Scholar 

  14. Lovell, S. C., Davis, I. W., Arendall, W. B., III., de Bakker, P. I. W., Word, J. M., Prisant, M. G., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  Google Scholar 

  15. Halgren, R. G. (2001). Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucleic Acids Research, 29(2), 582–588. https://doi.org/10.1093/nar/29.2.582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozano-Terol, G., Gallego-Jara, J., Sola Martínez, R. A., Cánovas-Díaz, M., & de Diego-Puente, T. (2019). Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains. Microbial Cell Factories, 18(1), 151. https://doi.org/10.1186/s12934-019-1202-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, X., Li, Z.-M., Li, Q., Shi, M., Bao, L., Xu, D., & Li, Z. (2019). Purification and biochemical characterization of FrsA protein from Vibrio vulnificus as an esterase. PLoS ONE, 14(4), e0215084. https://doi.org/10.1371/journal.pone.0215084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  19. Dherbécourt, J., Falentin, H., Canaan, S., & Thierry, A. (2008). A genomic search approach to identify esterases in Propionibacterium freudenreichii involved in the formation of flavour in Emmental cheese. Microbial Cell Factories, 7, 1–14. https://doi.org/10.1186/1475-2859-7-16

    Article  CAS  Google Scholar 

  20. Kademi, A., Ait-Abdelkader, N., Fakhreddine, L., & Baratti, J. (2000). Purification and characterization of a thermostable esterase from the moderate thermophile Bacillus circulans. Applied Microbiology and Biotechnology, 54(2), 173–179. https://doi.org/10.1007/s002530000353

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. J., Chen, C. S., Liu, H. T., Chen, J. L., Xia, Y., & Wu, S. J. (2019). Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate. Biotechnology Letters, 41, 1223–1232. https://doi.org/10.1007/s10529-019-02727-w

    Article  CAS  PubMed  Google Scholar 

  22. Masomian, M., Rahaman, R., Salleh, A., & Basri, M. (2016). Analysis of comparative sequence and genomic data to verify phylogenetic relationship and explore a new subfamily of bacterial lipases. PLoS ONE, 11(3), e0149851. https://doi.org/10.1371/journal.pone.0149851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vinay Kumar, D., Lee, C., & Jang, S.-H. (2018). Organic solvent-tolerant esterase from Sphingomonas glacialis based on amino acid compositionanalysis: cloning and characterization of EstSP2. Journal of Microbiology and Biotechnology, 28, 1502–1510. https://doi.org/10.4014/jmb.1806.06032

    Article  CAS  Google Scholar 

  24. Bourne, P. C., Isupov, M. N., & Littlechild, J. A. (2000). The atomic-resolution structure of a novel bacterial esterase. Structure, 8, 143–151. https://doi.org/10.1016/S0969-2126(00)00090-3

    Article  CAS  PubMed  Google Scholar 

  25. Dröge, M. J., Bos, R., & Quax, W. J. (2001). Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis. European Journal of Biochemistry, 268(11), 3332–3338. https://doi.org/10.1046/j.1432-1327.2001.02238.x

    Article  PubMed  Google Scholar 

  26. Schmidt, M., Henke, E., Heinze, B., Kourist, R., Hidalgo, A., & Bornscheuer, U. T. (2007). A versatile esterase from Bacillus subtilis: Cloning, expression characterization, and its application in biocatalysis. Biotechnology Journal, 2(2), 249–253. https://doi.org/10.1002/biot.200600174

    Article  CAS  PubMed  Google Scholar 

  27. Fazaeli, A., Golestani, A., Lakzaei, M., Rasi Varaei, S. S., & Aminian, M. (2019). Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS ONE, 14(2), e0212217. https://doi.org/10.1371/journal.pone.0212217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olusesan, A. T., Azura, L. K., Forghani, B., Bakar, F. A., Mohamed, A. K. S., Radu, S., & Saari, N. (2011). Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotechnology, 28(6), 738–745. https://doi.org/10.1016/j.nbt.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Calo-Mata, P., Böhme, K., Carrera, M., Caamaño-Antelo, S., Gallardo, J., Barros-Velázquez, J., & Cañas, B. (2016). Bacterial identification by LC-ESI-IT-MS/MS. In Microbes in the spotlight: Recent progress in the understanding of beneficial and harmful microorganisms (pp. 160–164). Universal Publishers.

  31. Ghori, I., Iqbal, M., & Hameed, A. (2011). Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazilian Journal of Microbiology Publication of the Brazilian Society for Microbiology, 42, 22–29. https://doi.org/10.1590/S1517-83822011000100003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noby, N., Hussein, A., Saeed, H., & Embaby, A. M. (2020). Recombinant cold-adapted halotolerant, organic solvent-stable esterase (estHIJ) from Bacillus halodurans. Analytical Biochemistry, 591, 113554. https://doi.org/10.1016/j.ab.2019.113554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Department of Science and Technology (DST) under INSPIRE Fellowship scheme.

Author information

Authors and Affiliations

Authors

Contributions

The implementation of work and preparation of the manuscript was done by ‘First author.’ The design of the work plan and correction of the manuscript were done by ‘Corresponding author.’

Corresponding author

Correspondence to Jayachandran Kochupurackal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Informed Consent

Not applicable.

Research Involving Human/Animal Participants

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumya, P., Kochupurackal, J. An Esterase with Increased Acetone Tolerance from Bacillus subtilis E9 over Expressed in E. coli BL21 Using pTac Bs-est Vector. Mol Biotechnol 64, 814–824 (2022). https://doi.org/10.1007/s12033-022-00458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00458-4

Keywords

Navigation