Skip to main content

Advertisement

Log in

Research Progress of LncRNAs in Atrial Fibrillation

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is one of the most common arrhythmias in adults, with high morbidity and increased mortality risk. In recent years, the clinical diagnosis, treatment, and mechanistic research of AF have increased exponentially, and regulation based on the potential molecular mechanism of AF is a research hotspot. Long noncoding RNAs (LncRNAs), usually refer to noncoding RNA transcripts greater than 200 nucleotides in length, have been shown to play a role in cardiovascular diseases such as coronary artery disease, heart failure, and myocardial fibrosis through various regulatory methods. An increasing number of researchers have begun to pay attention to the identification and function of LncRNAs in AF. This article reviews changes in the expression of related LncRNAs detected in AF and describes the LncRNAs that play a regulatory role in AF-related processes, to explore the potential of LncRNAs as new biomarkers and therapeutic targets in AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Staerk, L., et al. (2018). Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: Cohort study based on longitudinal data from the Framingham Heart Study. BMJ, 361, k1453.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benjamin, E. J., et al. (1998). Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation, 98(10), 946–952.

    Article  CAS  PubMed  Google Scholar 

  3. Chung, M. K., et al. (2020). Atrial fibrillation: JACC council perspectives. Journal of the American College of Cardiology, 75(14), 1689–1713.

    Article  PubMed  Google Scholar 

  4. Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2021). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217–221.

    Article  PubMed  Google Scholar 

  5. Li, C. Y., et al. (2021). Atrial fibrosis underlying atrial fibrillation (Review). International Journal of Molecular Medicine, 47(3), 9.

    Article  CAS  PubMed  Google Scholar 

  6. Michaud, G. F., & Stevenson, W. G. (2021). Atrial fibrillation. New England Journal of Medicine, 384(4), 353–361.

    Article  PubMed  Google Scholar 

  7. Packer, D. L., et al. (2019). Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA, 321(13), 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas, M. R., & Lip, G. Y. (2017). Novel risk markers and risk assessments for cardiovascular disease. Circulation Research, 120(1), 133–149.

    Article  CAS  PubMed  Google Scholar 

  9. Wilusz, J. E., Sunwoo, H., & Spector, D. L. (2009). Long noncoding RNAs: Functional surprises from the RNA world. Genes & Development, 23(13), 1494–1504.

    Article  CAS  Google Scholar 

  10. Luo, X., Yang, B., & Nattel, S. (2015). MicroRNAs and atrial fibrillation: Mechanisms and translational potential. Nature Reviews. Cardiology, 12(2), 80–90.

    Article  CAS  PubMed  Google Scholar 

  11. Staerk, L., et al. (2017). Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circulation Research, 120(9), 1501–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haïssaguerre, M., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339(10), 659–666.

    Article  PubMed  Google Scholar 

  13. Gramley, F., et al. (2009). Age-related atrial fibrosis. Age (Dordrecht, Netherlands), 31(1), 27–38.

    Article  CAS  Google Scholar 

  14. Yue, L., et al. (1997). Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circulation Research, 81(4), 512–525.

    Article  CAS  PubMed  Google Scholar 

  15. Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circulation Arrhythmia and Electrophysiology, 1(1), 62–73.

    Article  PubMed  Google Scholar 

  16. Burstein, B., & Nattel, S. (2008). Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. Journal of the American College of Cardiology, 51(8), 802–809.

    Article  CAS  PubMed  Google Scholar 

  17. Moran, V. A., Perera, R. J., & Khalil, A. M. (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research, 40(14), 6391–6400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guttman, M., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364), 295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loewer, S., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42(12), 1113–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guttman, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pang, K. C., Frith, M. C., & Mattick, J. S. (2006). Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends in Genetics, 22(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  22. Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166.

    Article  CAS  PubMed  Google Scholar 

  23. Shi, J., et al. (2021). Circulating long noncoding RNA, GAS5, as a novel biomarker for patients with atrial fibrillation. Journal of Clinical Laboratory Analysis, 35(1), 23572.

    Google Scholar 

  24. Zeng, W., & Jin, J. (2020). The correlation of serum long non-coding RNA ANRIL with risk factors, functional outcome, and prognosis in atrial fibrillation patients with ischemic stroke. Journal of Clinical Laboratory Analysis, 34(8), e23352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao, L., et al. (2020). LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Molecular Biology Reports, 47(4), 2605–2617.

    Article  CAS  PubMed  Google Scholar 

  26. Ruan, Z. B., et al. (2020). Identification of circulating lncRNA expression profiles in patients with atrial fibrillation. Disease Markers, 2020, 8872142.

    PubMed  PubMed Central  Google Scholar 

  27. Wang, L. Y., et al. (2019). LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation (Af) by reducing expression of JP2 and RyR2 via miR-24. Biomed Pharmacother, 120, 109–364.

    Google Scholar 

  28. Su, Y., et al. (2018). The long noncoding RNA expression profiles of paroxysmal atrial fibrillation identified by microarray analysis. Gene, 642, 125–134.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, X. J., et al. (2017). Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are up-regulated in permanent atrial fibrillation. Am J Transl Res, 9(5), 2314–2326.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, Y., et al. (2016). Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults. Oncotarget, 7(10), 10803–10811.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qian, C., et al. (2019). Identification of functional lncRNAs in atrial fibrillation by integrative analysis of the lncRNA-mRNA network based on competing endogenous RNAs hypothesis. Journal of Cellular Physiology, 234(7), 11620–11630.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, J., et al. (2019). Long noncoding RNA GAS5 attenuates cardiac fibroblast proliferation in atrial fibrillation via repressing ALK5. European Review for Medical and Pharmacological Sciences, 23(17), 7605–7610.

    CAS  PubMed  Google Scholar 

  33. Liu, L., Luo, F., & Lei, K. (2021). Exosomes containing LINC00636 inhibit MAPK1 through the miR-450a-2-3p overexpression in human pericardial fluid and improve cardiac fibrosis in patients with atrial fibrillation. Mediators of Inflammation, 2021, 9960241.

    PubMed  PubMed Central  Google Scholar 

  34. Sun, H., Zhang, J., & Shao, Y. (2021). Integrative analysis reveals essential mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) in paroxysmal and persistent atrial fibrillation patients. Anatolian Journal of Cardiology, 25(6), 414–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai, H., et al. (2021). LncRNA nuclear-enriched abundant transcript 1 regulates atrial fibrosis via the miR-320/NPAS2 axis in atrial fibrillation. Front Pharmacol, 12, 64–7124.

    Google Scholar 

  36. Wu, N., et al. (2020). Identification of long non-coding RNA and circular RNA expression profiles in atrial fibrillation. Heart, Lung & Circulation, 29(7), e157–e167.

    Article  Google Scholar 

  37. Zhao, L., et al. (2020). Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation. Biomedicine & Pharmacotherapy, 121, 109634.

    Article  CAS  Google Scholar 

  38. Ke, Z. P., et al. (2019). RNA sequencing profiling reveals key mRNAs and long noncoding RNAs in atrial fibrillation. Journal of Cell Biochemistry, 121, 3752.

    Article  CAS  Google Scholar 

  39. Wu, J., et al. (2019). Identification of atrial fibrillation-associated lncRNAs in atria from patients with rheumatic mitral valve disease. Microscopy Research and Technique, 82(7), 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., et al. (2019). LncRNA NRON alleviates atrial fibrosis via promoting NFATc3 phosphorylation. Molecular and Cellular Biochemistry, 457(1–2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  41. Mei, B., et al. (2018). Long non-coding RNA expression profile in permanent atrial fibrillation patients with rheumatic heart disease. European Review for Medical and Pharmacological Sciences, 22(20), 6940–6947.

    CAS  PubMed  Google Scholar 

  42. Chen, G., et al. (2016). Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Molecular Medicine Reports, 14(6), 5311–5317.

    Article  CAS  PubMed  Google Scholar 

  43. Ruan, Z., et al. (2015). Long non-coding RNA expression profile in atrial fibrillation. International Journal of Clinical and Experimental Pathology, 8(7), 8402–8410.

    PubMed  PubMed Central  Google Scholar 

  44. Bruneau, B. G. (2013). Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harbor Perspectives in Biology, 5(3), 8292.

    Article  CAS  Google Scholar 

  45. Yeh, Y. H., et al. (2013). Region-specific gene expression profiles in the left atria of patients with valvular atrial fibrillation. Heart Rhythm, 10(3), 383–391.

    Article  PubMed  Google Scholar 

  46. Wijffels, M. C., et al. (1995). Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation, 92(7), 1954–1968.

    Article  CAS  PubMed  Google Scholar 

  47. Viereck, J., & Thum, T. (2017). Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circulation Research, 120(2), 381–399.

    Article  CAS  PubMed  Google Scholar 

  48. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505(7483), 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, W., et al. (2015). Transcriptome analysis of canine cardiac fat pads: Involvement of two novel long non-coding RNAs in atrial fibrillation neural remodeling. Journal of Cellular Biochemistry, 116(5), 809–821.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Z., et al. (2017). Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. Journal of Molecular and Cellular Cardiology, 108, 73–85.

    Article  CAS  PubMed  Google Scholar 

  51. Lu, Y., et al. (2010). MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation, 122(23), 2378–2387.

    Article  CAS  PubMed  Google Scholar 

  52. Shen, C., et al. (2018). YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis. Biochemical and Biophysical Research Communications, 505(1), 134–140.

    Article  CAS  PubMed  Google Scholar 

  53. Du, J., et al. (2020). Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulate KCNJ2. Journal of Cellular and Molecular Medicine, 24(21), 12777–12788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luo, X., et al. (2013). MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. The Journal of Clinical Investigation, 123(5), 1939–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai, W., et al. (2020). Long noncoding RNA HOTAIR functions as a competitive endogenous RNA to regulate connexin43 remodeling in atrial fibrillation by sponging microRNA-613. Cardiovascular Therapeutics, 2020, 5925342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhao, J. B., et al. (2018). Modulative effects of lncRNA TCONS_00202959 on autonomic neural function and myocardial functions in atrial fibrillation rat model. European Review for Medical and Pharmacological Sciences, 22(24), 8891–8897.

    PubMed  Google Scholar 

  57. Shan, H., et al. (2013). Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling. International Journal of Cardiology, 167(6), 2798–2805.

    Article  PubMed  Google Scholar 

  58. Li, N., Zhou, H., & Tang, Q. (2018). miR-133: A suppressor of cardiac remodeling? Frontiers in Pharmacology, 9, 903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chen, S., et al. (2014). Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. Journal of Cellular and Molecular Medicine, 18(3), 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duisters, R. F., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Y., et al. (2021). Identifying ceRNA networks associated with the susceptibility and persistence of atrial fibrillation through weighted gene co-expression network analysis. Frontiers in Genetics, 12, 653–474.

    CAS  Google Scholar 

  62. Sun, F., et al. (2019). LncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes. Bioscience Report, 39(11), BSR20192215.

    Article  CAS  Google Scholar 

  63. Li, J., Zhang, Q., & Jiao, H. (2021). LncRNA NRON promotes M2 macrophage polarization and alleviates atrial fibrosis through suppressing exosomal miR-23a derived from atrial myocytes. Journal of the Formosan Medical Association, 120(7), 1512–1519.

    Article  CAS  PubMed  Google Scholar 

  64. Xuan, L., et al. (2017). Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. Journal of Cellular and Molecular Medicine, 21(9), 1803–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cao, F., et al. (2019). LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-beta1-Smad axis in atrial fibrillation. Molecular Medicine, 25(1), 7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leblanc, F. J. A., et al. (2021). Transcriptomic profiling of canine atrial fibrillation models after one week of sustained arrhythmia. Circulation: Arrhythmia and Electrophysiology, 109, 69.

    Google Scholar 

  67. Mondal, T., et al. (2015). MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nature Communications, 6, 7743.

    Article  CAS  PubMed  Google Scholar 

  68. Harada, M., et al. (2012). Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation, 126(17), 2051–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The literature search was completed in June 2021. We apologize to colleagues whose work was not cited in this review due to page limitations. All authors read and approved the final manuscript.

Funding

This research was funded by the Key Specialty of Discipline Construction Project of Shanghai Health Committee (Grant No. ZK2019B25), and the Research Project of Science and Technology Commission of Pudong New Area (Grant No. PKJ2019-Y40).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. WW and BT had the idea for the article, WW performed the literature search and data analysis, ZN and XL critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinming Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tian, B., Ning, Z. et al. Research Progress of LncRNAs in Atrial Fibrillation. Mol Biotechnol 64, 758–772 (2022). https://doi.org/10.1007/s12033-022-00449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00449-5

Keywords

Navigation