Abstract
Cancer stem cells (CSCs) are the major culprits leading to a new level of complexity and the consequential therapy resistance and disease recurrence in colorectal cancer (CRC). This study focuses on the effect of long non-coding RNA (lncRNA) TPT1-AS1 and its associated molecules on the stemness maintenance of CRC stem cells. TPT1-AS1 was identified as a significantly upregulated gene in CRC using the GSE146587 dataset. Stem cells from CRC HCT116 and CACO2 cells were isolated. TPT1-AS1 was significantly highly expressed in the CSCs compared to non-stem cells. Downregulation of TPT1-AS1 reduced the stemness of the CRC stem cells. TPT1-AS1 recruited STAT1 to the promoter region of APC to suppress APC transcription. Further upregulation of STAT1 or downregulation of APC blocked the role of TPT1-AS1 silencing and restored the malignant behaviors of CSC stem cells. APC inactivated the Wnt/β-catenin pathway. Overexpression of STAT1 restored the levels of cyclin D1 and β-catenin in cells suppressed by TPT1-AS1 silencing. In summary, this work demonstrates that TPT1-AS1 recruits STAT1 to suppress APC transcription and increase the stemness of colorectal CSCs via Wnt/β-catenin activation.
This is a preview of subscription content, access via your institution.







Data Availability
The analyzed datasets generated during the study are available from the corresponding author on reasonable request.
Abbreviations
- ANOVA:
-
Analysis of variance
- APC:
-
Adenomatous polyposis coli
- ChIP:
-
Chromatin immunoprecipitation
- CSCs:
-
Cancer stem cells
- DMEM:
-
Dulbecco's modified Eagle medium
- FBS:
-
Fetal bovine serum
- FISH:
-
Fluorescence in situ hybridization
- GAPDH:
-
Glyceraldehyde-3-phosphate dehydrogenase
- GEO:
-
Gene expression omnibus
- HE:
-
Hematoxylin–eosin staining
- HRP:
-
Horseradish peroxidase
- IgG:
-
Immunoglobulin G
- Mean ± SD:
-
Mean ± standard deviation
- MT:
-
Mutant-type
- PBS:
-
Phosphate-buffered saline
- PFA:
-
Paraformaldehyde
- RIP:
-
RNA immunoprecipitation
- STAT1:
-
Signal transducer and activator of transcription 1
- TCGA:
-
The cancer genome atlas
- WT:
-
Wild-type
References
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
Brody, H. (2015). Colorectal cancer. Nature, 521(7551), S1. https://doi.org/10.1038/521S1a
Simon, K. (2016). Colorectal cancer development and advances in screening. Clinical Interventions in Aging, 11, 967–976. https://doi.org/10.2147/CIA.S109285
Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G. S., Barzi, A., & Jemal, A. (2017). Colorectal cancer statistics. CA: A Cancer Journal for Clinicians, 67(3), 177–193. https://doi.org/10.3322/caac.21395
Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T., & Itinteang, T. (2018). Cancer stem cells in colorectal cancer: A review. Journal of Clinical Pathology, 71(2), 110–116. https://doi.org/10.1136/jclinpath-2017-204739
Zeuner, A., Todaro, M., Stassi, G., & De Maria, R. (2014). Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell, 15(6), 692–705. https://doi.org/10.1016/j.stem.2014.11.012
Lorenzi, L., Avila Cobos, F., Decock, A., Everaert, C., Helsmoortel, H., Lefever, S., Verboom, K., Volders, P. J., Speleman, F., Vandesompele, J., & Mestdagh, P. (2019). Long noncoding RNA expression profiling in cancer: Challenges and opportunities. Genes, Chromosomes & Cancer, 58(4), 191–199. https://doi.org/10.1002/gcc.22709
Guo, Z., Zhou, C., Zhong, X., Shi, J., Wu, Z., Tang, K., Wang, Z., & Song, Y. (2019). The long noncoding RNA CTA-941F99 is frequently downregulated and may serve as a biomarker for carcinogenesis in colorectal cancer. J Clin Lab Anal. https://doi.org/10.1002/jcla.22986
Jiang, X., Zhu, Q., Wu, P., Zhou, F., & Chen, J. (2020). Upregulated long noncoding RNA LINC01234 predicts unfavorable prognosis for colorectal cancer and negatively correlates with KLF6 expression. Annals of Laboratory Medicine, 40(2), 155–163. https://doi.org/10.3343/alm.2020.40.2.155
Yan, H., & Bu, P. (2018). Non-coding RNAs in cancer stem cells. Cancer Letters, 421, 121–126. https://doi.org/10.1016/j.canlet.2018.01.027
Zhang, Y., Sun, J., Qi, Y., Wang, Y., Ding, Y., Wang, K., Zhou, Q., Wang, J., Ma, F., Zhang, J., & Guo, B. (2020). Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY), 12(7), 6191–6205. https://doi.org/10.18632/aging.103016
Long, Y., Wang, X., Youmans, D. T., & Cech, T. R. (2017). How do lncRNAs regulate transcription? Sci Adv. https://doi.org/10.1126/sciadv.aao2110
Meng, C., Guo, L. B., Liu, X., Chang, Y. H., & Lin, Y. (2017). Targeting STAT1 in both cancer and insulin resistance diseases. Current Protein and Peptide Science, 18(2), 181–188. https://doi.org/10.2174/1389203718666161117114735
Wang, W., Zhang, L., Morlock, L., Williams, N. S., Shay, J. W., & De Brabander, J. K. (2019). Design and synthesis of TASIN analogues specifically targeting colorectal cancer cell lines with mutant adenomatous polyposis coli (APC). Journal of Medicinal Chemistry, 62(10), 5217–5241. https://doi.org/10.1021/acs.jmedchem.9b00532
Aghabozorgi, A. S., Bahreyni, A., Soleimani, A., Bahrami, A., Khazaei, M., Ferns, G. A., Avan, A., & Hassanian, S. M. (2019). Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie, 157, 64–71. https://doi.org/10.1016/j.biochi.2018.11.003
Isobe, T., Hisamori, S., Hogan, D. J., Zabala, M., Hendrickson, D. G., Dalerba, P., Cai, S., Scheeren, F., Kuo, A. H., Sikandar, S. S., Lam, J. S., Qian, D., Dirbas, F. M., Somlo, G., Lao, K., Brown, P. O., Clarke, M. F., & Shimono, Y. (2014). miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. eLife. https://doi.org/10.7554/eLife.01977
Moradi, A., Pourseif, M. M., Jafari, B., Parvizpour, S., & Omidi, Y. (2020). Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacological Research, 156, 104790. https://doi.org/10.1016/j.phrs.2020.104790
Das, P. K., Islam, F., & Lam, A. K. (2020). The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells. https://doi.org/10.3390/cells9061392
Hu, C., Fang, K., Zhang, X., Guo, Z., & Li, L. (2020). Dyregulation of the lncRNA TPT1-AS1 positively regulates QKI expression and predicts a poor prognosis for patients with breast cancer. Pathology, Research and Practice, 216(11), 153216. https://doi.org/10.1016/j.prp.2020.153216
Gao, X., Cao, Y., Li, J., Wang, C., & He, H. (2020). LncRNA TPT1-AS1 sponges miR-23a-5p in glioblastoma to promote cancer cell proliferation. Cancer Biotherapy & Radiopharmaceuticals. https://doi.org/10.1089/cbr.2019.3484
Wu, W., Gao, H., Li, X., Zhu, Y., Peng, S., Yu, J., Zhan, G., Wang, J., Liu, N., & Guo, X. (2019). LncRNA TPT1-AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression. Cancer Science, 110(5), 1587–1598. https://doi.org/10.1111/cas.14009
Smillie, C. L., Sirey, T., & Ponting, C. P. (2018). Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Critical Reviews in Biochemistry and Molecular Biology, 53(3), 231–245. https://doi.org/10.1080/10409238.2018.1447542
Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358. https://doi.org/10.1016/j.cell.2011.07.014
Xu, H., Zhao, G., Zhang, Y., Jiang, H., Wang, W., Zhao, D., Yu, H., & Qi, L. (2019). Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression. Journal of Experimental & Clinical Cancer Research, 38(1), 486. https://doi.org/10.1186/s13046-019-1474-7
Long, X., Song, K., Hu, H., Tian, Q., Wang, W., Dong, Q., Yin, X., & Di, W. (2019). Long non-coding RNA GAS5 inhibits DDP-resistance and tumor progression of epithelial ovarian cancer via GAS5-E2F4-PARP1-MAPK axis. Journal of Experimental & Clinical Cancer Research, 38(1), 345. https://doi.org/10.1186/s13046-019-1329-2
Jiang, H., Li, T., Qu, Y., Wang, X., Li, B., Song, J., Sun, X., Tang, Y., Wan, J., Yu, Y., Zhan, J., & Zhang, H. (2018). Long non-coding RNA SNHG15 interacts with and stabilizes transcription factor Slug and promotes colon cancer progression. Cancer Letters, 425, 78–87. https://doi.org/10.1016/j.canlet.2018.03.038
Zhang, Y., & Liu, Z. (2017). STAT1 in cancer: Friend or foe? Discovery Medicine, 24(130), 19–29.
Liu, C., Shi, J., Li, Q., Li, Z., Lou, C., Zhao, Q., Zhu, Y., Zhan, F., Lian, J., Wang, B., Guan, X., Fang, L., Li, Z., Wang, Y., Zhou, B., Yao, Y., & Zhang, Y. (2019). STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clinical Science (London, England), 133(5), 645–663. https://doi.org/10.1042/CS20180816
Tanaka, A., Zhou, Y., Ogawa, M., Shia, J., Klimstra, D. S., Wang, J. Y., & Roehrl, M. H. (2020). STAT1 as a potential prognosis marker for poor outcomes of early stage colorectal cancer with microsatellite instability. PLoS ONE, 15(4), e0229252. https://doi.org/10.1371/journal.pone.0229252
Ji, D., Feng, Y., Peng, W., Li, J., Gu, Q., Zhang, Z., Qian, W., Wang, Q., Zhang, Y., & Sun, Y. (2020). NMI promotes cell proliferation through TGFbeta/Smad pathway by upregulating STAT1 in colorectal cancer. Journal of Cellular Physiology, 235(1), 429–441. https://doi.org/10.1002/jcp.28983
Sakahara, M., Okamoto, T., Oyanagi, J., Takano, H., Natsume, Y., Yamanaka, H., Kusama, D., Fusejima, M., Tanaka, N., Mori, S., Kawachi, H., Ueno, M., Sakai, Y., Noda, T., Nagayama, S., & Yao, R. (2019). IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Science, 110(4), 1293–1305. https://doi.org/10.1111/cas.13964
Zhang, Y., Guo, L., Li, Y., Feng, G. H., Teng, F., Li, W., & Zhou, Q. (2018). MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Molecular Cancer, 17(1), 1. https://doi.org/10.1186/s12943-017-0753-1
Najafi, M., Farhood, B., & Mortezaee, K. (2019). Cancer stem cells (CSCs) in cancer progression and therapy. Journal of Cellular Physiology, 234(6), 8381–8395. https://doi.org/10.1002/jcp.27740
Nusse, R., & Varmus, H. (2012). Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO Journal, 31(12), 2670–2684. https://doi.org/10.1038/emboj.2012.146
Samowitz, W. S., Slattery, M. L., Sweeney, C., Herrick, J., Wolff, R. K., & Albertsen, H. (2007). APC mutations and other genetic and epigenetic changes in colon cancer. Molecular Cancer Research, 5(2), 165–170. https://doi.org/10.1158/1541-7786.MCR-06-0398
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26. https://doi.org/10.1016/j.devcel.2009.06.016
Funding
This work was supported by the Project of Changzhou Medical Innovation Team (CCX201807).
Author information
Authors and Affiliations
Contributions
BXC is the guarantor of integrity of the entire study and contributed to the concepts; BXC, HJS, STX, and QM contributed to the data acquisition and statistical analysis; BXC contributed to the experimental studies; BXC and HJS contributed to the manuscript preparation. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical Approval
All animal experiments were approved by the Animal Ethical Committee of Changzhou No. 2 People’s Hospital and strictly performed in accordance with the National Institutes of Health Guide to the Care and Use of Laboratory Animals (8th edition, 2011).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, B., Sun, H., Xu, S. et al. Long Non-coding RNA TPT1-AS1 Suppresses APC Transcription in a STAT1-Dependent Manner to Increase the Stemness of Colorectal Cancer Stem Cells. Mol Biotechnol 64, 560–574 (2022). https://doi.org/10.1007/s12033-022-00448-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-022-00448-6
Keywords
- Long non-coding RNA TPT1-AS1
- Colorectal cancer
- CSCs
- STAT1
- APC